Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 33(13): e17411, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38785347

ABSTRACT

Studying hybrid zones that form between morphologically cryptic taxa offers valuable insights into the mechanisms of cryptic speciation and the evolution of reproductive barriers. Although hybrid zones have long been the focus of evolutionary studies, the awareness of cryptic hybrid zones increased recently due to rapidly growing evidence of biological diversity lacking obvious phenotypic differentiation. The characterization of cryptic hybrid zones with genome-wide analysis is in its early stages and offers new perspectives for studying population admixture and thus the impact of gene flow. In this study, we investigate the population genomics of the Myotis nattereri complex in one of its secondary contact zones, where a putative hybrid zone is formed between two of its cryptic lineages. By utilizing a whole-genome shotgun sequencing approach, we aim to characterize this cryptic hybrid zone in detail. Demographic analysis suggests that the cryptic lineages diverged during the Pliocene, c. 3.6 million years ago. Despite this ancient separation, the populations in the contact zone exhibit mitochondrial introgression and a considerable amount of mixing in nuclear genomes. The genomic structure of the populations corresponds to geographic locations and the genomic admixture changes along a geographic gradient. These findings suggest that there is no effective hybridization barrier between both lineages, nevertheless, their population structure is shaped by dispersal barriers. Our findings highlight how such deeply diverged cryptic lineages can still readily hybridize in secondary contact.


Subject(s)
Chiroptera , Gene Flow , Genetic Speciation , Genetics, Population , Hybridization, Genetic , Animals , Chiroptera/genetics , Chiroptera/classification , DNA, Mitochondrial/genetics , Genetic Introgression
2.
Biodivers Data J ; 12: e119704, 2024.
Article in English | MEDLINE | ID: mdl-38721270

ABSTRACT

Background: Biodiversity surveys are essential for both academic research and conservation. Integrative approaches that combine morphological, genetic and acoustic aspects for species identification can provide reliable information in taxonomy and evolution. This is especially relevant for those groups with a high degree of cryptic diversity such as bats. New information: Here, we present the results from a field survey carried out in the Cuc Phuong National Park (CPNP) during 2019 as part of the VIETBIO project and from the examination of specimen collections preserved at the museums of CPNP and the Institute of Ecology and Biological Resources (IEBR). In addition, we include an annotated species list, based on this survey and a literature review. We here confirm that CPNP is home to at least 47 bat species belonging to 23 genera and seven families. We recorded ten of these bat species during our field survey. Obtained data in genetics (sequencing a fragment of the mitochondrial gene COI) supported the morphological identification of the recorded species for which we were able to produce these data. In addition, we include echolocation recordings obtained during our field training with the hope that they may contribute valuable insights to future work concerning the surveyed species. Results from the field survey represent a relevant contribution to biodiversity assessment efforts and, thus, support conservation and management efforts to maintain bat diversity in Vietnam.

SELECTION OF CITATIONS
SEARCH DETAIL
...