Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(12): 21664-21678, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-36224880

ABSTRACT

We report on the extraction of silver losses in the range 10 K-180 K by performing temperature-dependent micro-photoluminescence measurements in conjunction with numerical simulations on silver-coated nanolasers around near-infrared telecommunication wavelengths. By mapping changes in the quality factor of nanolasers into silver-loss variations, the imaginary part of silver permittivity is extracted at cryogenic temperatures. The latter is estimated to reach values an order of magnitude lower than room-temperature values. Temperature-dependent values for the thermo-optic coefficient of III-V semiconductors occupying the cavity are estimated as well. This data is missing from the literature and is crucial for precise device modeling. Our results can be useful for device designing, the theoretical validation of experimental observations as well as the evaluation of thermal effects in silver-coated nanophotonic structures.

2.
Opt Express ; 30(2): 1143-1151, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35209280

ABSTRACT

We demonstrate how the presence of gain-loss contrast between two coupled identical resonators can be used as a new degree of freedom to enhance the modulation frequency response of laser diodes. An electrically pumped microring laser system with a bending radius of 50 µm is fabricated on an InAlGaAs/InP MQW p-i-n structure. The room temperature continuous wave (CW) laser threshold current of the device is 27 mA. By adjusting the ratio between the injection current levels in the two coupled microrings, our experimental results clearly show a bandwidth improvement by up to 1.63 times the fundamental resonant frequency of the individual device. This matches well with our rate equation simulation model.

3.
Nat Commun ; 12(1): 3434, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34103519

ABSTRACT

Topological insulator lasers (TILs) are a recently introduced family of lasing arrays in which phase locking is achieved through synthetic gauge fields. These single frequency light source arrays operate in the spatially extended edge modes of topologically non-trivial optical lattices. Because of the inherent robustness of topological modes against perturbations and defects, such topological insulator lasers tend to demonstrate higher slope efficiencies as compared to their topologically trivial counterparts. So far, magnetic and non-magnetic optically pumped topological laser arrays as well as electrically pumped TILs that are operating at cryogenic temperatures have been demonstrated. Here we present the first room temperature and electrically pumped topological insulator laser. This laser array, using a structure that mimics the quantum spin Hall effect for photons, generates light at telecom wavelengths and exhibits single frequency emission. Our work is expected to lead to further developments in laser science and technology, while opening up new possibilities in topological photonics.

4.
Opt Express ; 28(13): 19608-19616, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32672234

ABSTRACT

The dynamical behavior of broken symmetric coupled cavity lasers is theoretically investigated. The frequency response of this class of lasers is obtained using small signal analysis under direct modulation. Our model predicts a modulation bandwidth enhancement as a broken symmetric laser, operating in the parity-time (PT) symmetry and non-PT symmetry domains. This theoretical prediction is numerically examined in a laser system based on an InGaAs quantum dot platform. Our results clearly show that in these structures, in addition to the injection current, the gain-loss contrast can be used as a new degree of freedom in order to control the characteristic poles of the frequency response function.

5.
Opt Express ; 27(15): 21834-21842, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31510253

ABSTRACT

We report on our initial attempt to characterize the intrinsic frequency response of metal-clad nanolasers. The probed nanolaser is optically biased and modulated, allowing the emitted signal to be detected using a high-speed photodiode at each modulation frequency. Based on this technique, the prospect of high-speed operation of nanolasers is evaluated by measuring the D-factor, which is the ratio of the resonance frequency to the square root of its output power(fR/Pout1/2). Our measurements show that for nanolasers, this factor is an order of magnitude greater than that of other state-of-the-art directly modulated semiconductor lasers. The theoretical analysis, based on the rate equation model and finite element method simulations of the cavity is in full agreement with the measurement results.

6.
Opt Express ; 26(21): 27153-27160, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30469789

ABSTRACT

The synergetic use of gain and loss in parity-time symmetric coupled resonators has been shown to lead to single-mode lasing operation. However, at the corresponding resonance frequency, an ideal ring resonator tends to support two degenerate eigenmodes, traveling along the cavity in opposite directions. Here, we show a unidirectional single-moded parity-time symmetric laser by incorporating active S-bend structures with opposite chirality in the respective ring resonators. Such chiral elements break the rotation symmetry of the ring cavities by providing an asymmetric coupling between the clockwise (CW) and the counterclockwise (CCW) traveling modes, hence creating a new type of exceptional point. This property, consequently, leads to the suppression of one of the counter-propagating modes. In this paper, we first measure the extinction ratio between the CW and CCW modes in a single ring resonator in the presence of an S-bend waveguide. We then experimentally investigate the unidirectional emission in PT-symmetric systems below and above the exceptional point. Finally, unidirectional emission will be shown in systems of two S-bend ring resonators coupled through a link structure.

7.
Light Sci Appl ; 6(8): e17091, 2017 Aug.
Article in English | MEDLINE | ID: mdl-30167287
SELECTION OF CITATIONS
SEARCH DETAIL
...