Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 56(23): 17119-17130, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36346717

ABSTRACT

Exposure to persistent organic pollutants (POPs) can significantly impact marine mammal health, reproduction, and fitness. This study addresses a significant 20-year gap in gray whale contaminant monitoring through analysis of POPs in 120 blubber biopsies. The scope of this substantial sample set is noteworthy in its range and diversity with collection between 2003 and 2017 along North America's west coast and across diverse sex, age, and reproductive parameters, including paired mothers and calves. Mean blubber concentrations of polychlorinated biphenyls (∑PCBs), dichlorodiphenyltrichloroethanes (∑DDTs), and chlordanes (∑CHLs) generally decreased since previous reports (1968-1999). This is the first report of polybrominated diphenyl ethers (PBDEs) and select hexachlorocyclohexanes (HCHs) in this species. Statistical modeling of the 19 most frequently detected compounds in this dataset revealed sex-, age-, and reproductive status-related patterns, predominantly attributed to maternal offloading. Mean POP concentrations differed significantly by sex in adults (17 compounds, up to 3-fold higher in males) but not in immatures (all 19 compounds). Mean POP concentrations were significantly greater in adults versus immatures in both males (17 compounds, up to 12-fold) and females (13 compounds, up to 3-fold). POP concentrations were detected with compound-specific patterns in nursing calves, confirming maternal offloading for the first time in this species.


Subject(s)
Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Male , Female , Persistent Organic Pollutants , Environmental Monitoring , Whales , Water Pollutants, Chemical/analysis , Polychlorinated Biphenyls/analysis , Halogenated Diphenyl Ethers/analysis , Adipose Tissue/chemistry
2.
R Soc Open Sci ; 7(4): 192203, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32431895

ABSTRACT

Species increasingly face environmental extremes. Morphological responses to changes in average environmental conditions are well documented, but responses to environmental extremes remain poorly understood. We used museum specimens to investigate relationships between a thermoregulatory morphological trait, bird bill surface area (SA) and a measure of short-term relative temperature extremity (RTE), which quantifies the degree that temperature maxima or minima diverge from the 5-year norm. Using a widespread, generalist species, Junco hyemalis, we found that SA exhibited different patterns of association with RTE depending on the overall temperature regime and on precipitation. While thermoregulatory function predicts larger SA at higher RTE, we found this only when the RTE existed in an environmental context that opposed it: atypically cold minimum temperature in a warm climate, or atypically warm maximum temperature in a cool climate. When environmental context amplified the RTE, we found a negative relationship between SA and RTE. We also found that the strength of associations between SA and RTE increased with precipitation. Our results suggest that trait responses to environmental variation may qualitatively differ depending on the overall environmental context, and that environmental change that extremifies already-extreme environments may produce responses that cannot be predicted from observations in less-extreme contexts.

SELECTION OF CITATIONS
SEARCH DETAIL
...