Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Anim (NY) ; 45(4): 140-2, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27003353

ABSTRACT

In a continuing effort to better understand the transmission and persistence of chronic wasting disease in wild populations of cervids, Colorado State University, Fort Collins houses two species of deer indoors to study the pathogenesis of chronic wasting disease. Here we report key aspects regarding the husbandry and medication of Reeves' muntjac and white-tailed deer in captivity for research purposes.


Subject(s)
Animal Experimentation , Animal Husbandry/methods , Deer , Wasting Disease, Chronic , Animals , Disease Models, Animal , Female , Housing, Animal , Male
2.
Vaccine ; 33(5): 726-33, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25539804

ABSTRACT

Prion disease is a unique category of illness, affecting both animals and humans, in which the underlying pathogenesis is related to a conformational change of a normal, self-protein called PrP(C) (C for cellular) to a pathological and infectious conformer known as PrP(Sc) (Sc for scrapie). Bovine spongiform encephalopathy (BSE), a prion disease believed to have arisen from feeding cattle with prion contaminated meat and bone meal products, crossed the species barrier to infect humans. Chronic wasting disease (CWD) infects large numbers of deer and elk, with the potential to infect humans. Currently no prionosis has an effective treatment. Previously, we have demonstrated we could prevent transmission of prions in a proportion of susceptible mice with a mucosal vaccine. In the current study, white-tailed deer were orally inoculated with attenuated Salmonella expressing PrP, while control deer were orally inoculated with vehicle attenuated Salmonella. Once a mucosal response was established, the vaccinated animals were boosted orally and locally by application of polymerized recombinant PrP onto the tonsils and rectal mucosa. The vaccinated and control animals were then challenged orally with CWD-infected brain homogenate. Three years post CWD oral challenge all control deer developed clinical CWD (median survival 602 days), while among the vaccinated there was a significant prolongation of the incubation period (median survival 909 days; p=0.012 by Weibull regression analysis) and one deer has remained CWD free both clinically and by RAMALT and tonsil biopsies. This negative vaccinate has the highest titers of IgA in saliva and systemic IgG against PrP. Western blots showed that immunoglobulins from this vaccinate react to PrP(CWD). We document the first partially successful vaccination for a prion disease in a species naturally at risk.


Subject(s)
Deer , Prions/administration & dosage , Prions/immunology , Salmonella Vaccines/administration & dosage , Wasting Disease, Chronic/prevention & control , Administration, Mucosal , Animals , Blood/immunology , Immunoglobulin A/analysis , Immunoglobulin G/blood , Prions/genetics , Saliva/immunology , Salmonella Vaccines/genetics , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Wasting Disease, Chronic/immunology
3.
J Vis Exp ; (89)2014 Jul 19.
Article in English | MEDLINE | ID: mdl-25079295

ABSTRACT

Animal models are commonly used throughout research laboratories to accomplish what would normally be considered impractical in a pathogen's native host. Milk collection from animals allows scientists the opportunity to study many aspects of reproduction including vertical transmission, passive immunity, mammary gland biology, and lactation. Obtaining adequate volumes of milk for these studies is a challenging task, especially from small animal models. Here we illustrate an inexpensive and facile method for milk collection in mice and Reeves' muntjac deer that does not require specialized equipment or extensive training. This particular method requires two researchers: one to express the milk and to stabilize the animal, and one to collect the milk in an appropriate container from either a Muntjac or mouse model. The mouse model also requires the use of a P-200 pipetman and corresponding pipette tips. While this method is low cost and relatively easy to perform, researchers should be advised that anesthetizing the animal is required for optimal milk collection.


Subject(s)
Mice , Milk , Muntjacs , Specimen Handling/methods , Animals , Mice, Transgenic , Models, Animal
4.
PLoS One ; 8(8): e71844, 2013.
Article in English | MEDLINE | ID: mdl-23977159

ABSTRACT

The horizontal transmission of prion diseases has been well characterized in bovine spongiform encephalopathy (BSE), chronic wasting disease (CWD) of deer and elk and scrapie of sheep, and has been regarded as the primary mode of transmission. Few studies have monitored the possibility of vertical transmission occurring within an infected mother during pregnancy. To study the potential for and pathway of vertical transmission of CWD in the native cervid species, we used a small cervid model-the polyestrous breeding, indoor maintainable, Reeves' muntjac deer-and determined that the susceptibility and pathogenesis of CWD in these deer reproduce that in native mule and white-tailed deer. Moreover, we demonstrate here that CWD prions are transmitted from doe to fawn. Maternal CWD infection also appears to result in lower percentage of live birth offspring. In addition, evolving evidence from protein misfolding cyclic amplification (PMCA) assays on fetal tissues suggest that covert prion infection occurs in utero. Overall, our findings demonstrate that transmission of prions from mother to offspring can occur, and may be underestimated for all prion diseases.


Subject(s)
Infectious Disease Transmission, Vertical/veterinary , Wasting Disease, Chronic/transmission , Animals , Female , Genotype , Male , Maternal-Fetal Exchange , Mothers , Muntjacs/genetics , Polymorphism, Genetic , Pregnancy , Prions/genetics , Prions/metabolism , Wasting Disease, Chronic/genetics
5.
J Virol ; 87(4): 1947-56, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23236066

ABSTRACT

Domestic and nondomestic cats have been shown to be susceptible to feline spongiform encephalopathy (FSE), almost certainly caused by consumption of bovine spongiform encephalopathy (BSE)-contaminated meat. Because domestic and free-ranging nondomestic felids scavenge cervid carcasses, including those in areas affected by chronic wasting disease (CWD), we evaluated the susceptibility of the domestic cat (Felis catus) to CWD infection experimentally. Cohorts of 5 cats each were inoculated intracerebrally (i.c.) or orally (p.o.) with CWD-infected deer brain. At 40 and 42 months postinoculation, two i.c.-inoculated cats developed signs consistent with prion disease, including a stilted gait, weight loss, anorexia, polydipsia, patterned motor behaviors, head and tail tremors, and ataxia, and the cats progressed to terminal disease within 5 months. Brains from these two cats were pooled and inoculated into cohorts of cats by the i.c., p.o., and intraperitoneal and subcutaneous (i.p./s.c.) routes. Upon subpassage, feline CWD was transmitted to all i.c.-inoculated cats with a decreased incubation period of 23 to 27 months. Feline-adapted CWD (Fel(CWD)) was demonstrated in the brains of all of the affected cats by Western blotting and immunohistochemical analysis. Magnetic resonance imaging revealed abnormalities in clinically ill cats, which included multifocal T2 fluid attenuated inversion recovery (FLAIR) signal hyperintensities, ventricular size increases, prominent sulci, and white matter tract cavitation. Currently, 3 of 4 i.p./s.c.- and 2 of 4 p.o. secondary passage-inoculated cats have developed abnormal behavior patterns consistent with the early stage of feline CWD. These results demonstrate that CWD can be transmitted and adapted to the domestic cat, thus raising the issue of potential cervid-to-feline transmission in nature.


Subject(s)
Cat Diseases/immunology , Cat Diseases/transmission , Disease Susceptibility , Wasting Disease, Chronic/immunology , Wasting Disease, Chronic/transmission , Animals , Blotting, Western , Brain/diagnostic imaging , Brain/pathology , Cat Diseases/pathology , Cats , Deer , Immunohistochemistry , Magnetic Resonance Imaging , Radiography , Wasting Disease, Chronic/pathology
6.
J Virol ; 87(3): 1890-2, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23175370

ABSTRACT

While the facile transmission of chronic wasting disease (CWD) remains incompletely elucidated, studies in rodents suggest that exposure of the respiratory mucosa may be an efficient pathway. The present study was designed to address this question in the native cervid host. Here, we demonstrate aerosol transmission of CWD to deer with a prion dose >20-fold lower than that used in previous oral inoculations. Inhalation of prions may facilitate transmission of CWD and, perhaps, other prion infections.


Subject(s)
Aerosols , Wasting Disease, Chronic/transmission , Animals , Deer , Inhalation
7.
J Virol ; 84(10): 5097-107, 2010 May.
Article in English | MEDLINE | ID: mdl-20219916

ABSTRACT

Substantial evidence for prion transmission via blood transfusion exists for many transmissible spongiform encephalopathy (TSE) diseases. Determining which cell phenotype(s) is responsible for trafficking infectivity has important implications for our understanding of the dissemination of prions, as well as their detection and elimination from blood products. We used bioassay studies of native white-tailed deer and transgenic cervidized mice to determine (i) if chronic wasting disease (CWD) blood infectivity is associated with the cellular versus the cell-free/plasma fraction of blood and (ii) in particular if B-cell (MAb 2-104(+)), platelet (CD41/61(+)), or CD14(+) monocyte blood cell phenotypes harbor infectious prions. All four deer transfused with the blood mononuclear cell fraction from CWD(+) donor deer became PrP(CWD) positive by 19 months postinoculation, whereas none of the four deer inoculated with cell-free plasma from the same source developed prion infection. All four of the deer injected with B cells and three of four deer receiving platelets from CWD(+) donor deer became PrP(CWD) positive in as little as 6 months postinoculation, whereas none of the four deer receiving blood CD14(+) monocytes developed evidence of CWD infection (immunohistochemistry and Western blot analysis) after 19 months of observation. Results of the Tg(CerPrP) mouse bioassays mirrored those of the native cervid host. These results indicate that CWD blood infectivity is cell associated and suggest a significant role for B cells and platelets in trafficking CWD infectivity in vivo and support earlier tissue-based studies associating putative follicular B cells with PrP(CWD). Localization of CWD infectivity with leukocyte subpopulations may aid in enhancing the sensitivity of blood-based diagnostic assays for CWD and other TSEs.


Subject(s)
B-Lymphocytes/chemistry , Blood Platelets/chemistry , Prions/analysis , Wasting Disease, Chronic/pathology , Wasting Disease, Chronic/transmission , Animals , Blotting, Western , Deer , Disease Models, Animal , Immunohistochemistry , Mice , Mice, Transgenic
8.
PLoS One ; 4(6): e5916, 2009 Jun 16.
Article in English | MEDLINE | ID: mdl-19529769

ABSTRACT

Key to understanding the epidemiology and pathogenesis of prion diseases, including chronic wasting disease (CWD) of cervids, is determining the mode of transmission from one individual to another. We have previously reported that saliva and blood from CWD-infected deer contain sufficient infectious prions to transmit disease upon passage into naïve deer. Here we again use bioassays in deer to show that blood and saliva of pre-symptomatic deer contain infectious prions capable of infecting naïve deer and that naïve deer exposed only to environmental fomites from the suites of CWD-infected deer acquired CWD infection after a period of 15 months post initial exposure. These results help to further explain the basis for the facile transmission of CWD, highlight the complexities associated with CWD transmission among cervids in their natural environment, emphasize the potential utility of blood-based testing to detect pre-clinical CWD infection, and could augur similar transmission dynamics in other prion infections.


Subject(s)
Prion Diseases/metabolism , Prion Diseases/veterinary , Prions/metabolism , Wasting Disease, Chronic/metabolism , Animals , Animals, Wild , Biopsy , Cohort Studies , Deer , Environmental Exposure , Genotype , Immunohistochemistry/methods , Prion Diseases/transmission , Saliva/metabolism , Wasting Disease, Chronic/transmission
9.
Science ; 314(5796): 133-6, 2006 Oct 06.
Article in English | MEDLINE | ID: mdl-17023660

ABSTRACT

A critical concern in the transmission of prion diseases, including chronic wasting disease (CWD) of cervids, is the potential presence of prions in body fluids. To address this issue directly, we exposed cohorts of CWD-naïve deer to saliva, blood, or urine and feces from CWD-positive deer. We found infectious prions capable of transmitting CWD in saliva (by the oral route) and in blood (by transfusion). The results help to explain the facile transmission of CWD among cervids and prompt caution concerning contact with body fluids in prion infections.


Subject(s)
Deer , Prions/analysis , Prions/blood , Saliva/chemistry , Wasting Disease, Chronic/metabolism , Wasting Disease, Chronic/transmission , Animals , Brain Chemistry , Cohort Studies , Deer/blood , Feces/chemistry , Lymphoid Tissue/chemistry , Prions/urine , Wasting Disease, Chronic/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...