Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Chemosphere ; 277: 130323, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33794432

ABSTRACT

Methods to assess environmental impacts from episodic discharges on receiving water bodies need a more environmentally relevant and scientifically defensible toxicity test design. Many permittees are regularly required to conduct 96-h toxicity tests on discharges associated with events that are generally less than 24 h in duration. Current standardized methods do not adequately reflect these episodic discharge conditions at either the point of compliance nor as it mixes with the receiving environment. In order to evaluate more representative biological effects, an alternative toxicity approach is described incorporating pulsed exposures of effluents and subsequent transfer of test organisms to clean water for the remainder of the test. This pulsed exposure protocol incorporates a slight modification to USEPA Whole Effluent Toxicity (WET) chronic and acute methods for two marine species, purple sea urchin embryos, Strongylocentrotus purpuratus, and juvenile mysid shrimp Americamysis bahia. Tests were performed with toxicants using standard static (96 h) and pulsed (6, 12, and 26 h) exposures. Following pulsed exposures, organisms were transferred to uncontaminated seawater for the remainder of the 96-h test period. Results for these species and endpoints indicated that the sensitivity of these species to copper and zinc were up to two orders of magnitude greater using standard continuous exposures compared to shorter pulsed exposures. Additional considerations assessed included timing of the onset of a pulse and latent effects following an exposure. This modified approach requires minimal modification to current standard methods and increases the realism to more accurately assess toxic effects resulting from episodic discharges.


Subject(s)
Copper , Water Pollutants, Chemical , Animals , Copper/toxicity , Seawater , Toxicity Tests , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Zinc/toxicity
2.
Chemosphere ; 273: 129699, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33524752

ABSTRACT

Per- and poly-fluoroalkyl substances (PFAS) are emerging contaminants that are coming under increasing scrutiny. Currently, there is a paucity of effects data for marine aquatic life, limiting the assessment of ecological risks and compliance with water quality policies. In the present study, the toxicity of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) to four standard marine laboratory toxicity testing species, encompassing five endpoints, were evaluated: 1) 96-h embryo-larval normal development for the purple sea urchin (Strongylocentrotus purpuratus); 2) 48-h embryo-larval normal development and normal survival for the Mediterranean mussel (Mytilus galloprovincialis); 3) 96-h survival of opossum shrimp (Americamysis bahia); and 4) 24-h light output for the bioluminescent dinoflagellate Pyrocystis lunula. All species were tested using standard United States Environmental Protection Agency (USEPA) and/or American Society for Testing and Materials (ASTM) International protocols. For PFOS and PFOA, the order of species sensitivity, starting with the most sensitive, was M. galloprovincialis, S. purpuratus, P. lunula, and A. bahia. The range of median lethal or median effect concentrations for PFOS (1.1-5.1 mg L-1) and PFOA (10-24 mg L-1) are comparable to the relatively few toxicity effect values available for marine species. In addition to providing effects data for PFOA and PFOS, this study indicates these species and endpoints are sensitive to PFAS such that their use will be appropriate for deriving toxicity data with other PFAS in marine ecosystems.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/toxicity , Animals , Caprylates/toxicity , Ecosystem , Fluorocarbons/analysis , Fluorocarbons/toxicity , Reference Standards , United States , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
3.
Environ Toxicol Chem ; 39(12): 2475-2484, 2020 12.
Article in English | MEDLINE | ID: mdl-32845535

ABSTRACT

Evaluating sediment recontamination due to storm water discharges is important when evaluating the long-term effectiveness of sediment remediation efforts at reducing biological impacts. The bioaccumulation of the heavy metals zinc, nickel, copper, cadmium, mercury, and lead and the metalloid arsenic in a clam (Macoma nasuta) was studied in surficial sediments before and after storm water inputs from Paleta Creek, California, USA, during wet seasons in 2015 to 2016 and 2016 to 2017. The bioaccumulation was compared with bulk sediment concentrations and porewater concentrations measured by diffusion gradient in thin film devices. Significant reductions in biota accumulation and porewater concentrations were observed in samples collected after storm seasons compared with before storm seasons despite bulk sediment concentrations remaining the same or increasing. This was apparently the result of the deposition of storm water contaminants in low bioavailable forms. The bioaccumulation of all the measured contaminants showed a positive significant correlation with porewater concentrations (p < 0.1, α = 0.1) and weak or no correlations with bulk sediment concentration. In conclusion, observed bulk sediment recontamination due to storm water should not be assumed to lead directly to greater biota accumulation without bioavailability assessment. Environ Toxicol Chem 2020;39:2475-2484. © 2020 SETAC.


Subject(s)
Biota , Geologic Sediments/chemistry , Metals, Heavy/analysis , Rain , Water Pollutants, Chemical/analysis , Water Pollution/analysis , Animals , Biological Assay , Biological Availability , Bivalvia/metabolism , California , Environmental Monitoring , Geography , Porosity , Seasons
4.
Sci Total Environ ; 737: 139726, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32563112

ABSTRACT

Recontamination of sediments by stormwater is a major concern when evaluating the potential effectiveness of sediment remediation. Stormwater and sediment sampling were conducted in a mixed-use watershed at Paleta Creek in San Diego, CA to evaluate methods for assessing sediment recontamination by metals. Size-segregated stormwater contaminant loads with simultaneous receiving water and sediment measurements were used to identify dominant sources and contaminants with respect to their impact on sediment recontamination. Most of the stormwater contaminant loads of Cd, Cu, Pb, and Zn were associated with residential and highway sources from the upstream portions of the watershed and As, Ni and Hg were more significantly influenced by the downstream area of the watershed. Cd was strongly associated with large particles (>63 µm) and observed to settle in near shore areas with some attenuation due to mixing and dilution. Cu, in contrast, was associated more with the filtered fraction (<0.45 µm) and clay fraction (0.45-5 µm), resulting in less near shore sediment recontamination. Depositing sediment and other metals, particularly Cu and Hg, exhibited greater accumulation in settling traps than could be attributed to stormwater loads indicating the importance of other sources or resuspension of bay sediments on surficial sediment concentrations. Pb, Zn, Ni, and As showed influences of both stormwater and other sources. The study showed that measurement of size-segregated stormwater contaminant mass and concentrations combined with simultaneous measurements of deposition in sediment traps could differentiate between recontamination by stormwater and that of other sources.

5.
Environ Toxicol Chem ; 39(4): 873-881, 2020 04.
Article in English | MEDLINE | ID: mdl-32004383

ABSTRACT

Determination of the median effective concentration (EC50) of Cu on Mytilus galloprovincialis larvae by diffusive gradient in thin films (DGT) has been shown to effectively reduce the need to consider dissolved organic carbon (DOC) concentration and quality. A standard toxicity test protocol was used to validate previously modeled protective effects, afforded to highly sensitive marine larvae by ligand competition, in 5 diverse site waters. The results demonstrate significant narrowing of M. galloprovincialis toxicological endpoints, where EC50s ranged from 3.74 to 6.67 µg/L as CDGT Cu versus 8.76 to 26.8 µg/L as dissolved Cu (CuDISS ) over a DOC range of 0.74 to 3.11 mg/L; Strongylocentrotus purpuratus EC50s were 10.5 to 19.3 µg/L as CDGT Cu versus 22.7 to 67.1 µg/L as CuDISS over the same DOC range. The quality of DOC was characterized by fluorescence excitation and emission matrices. The results indicate that the heterogeneity of competing Cu binding ligands, in common marine waters, minimizes the need for class determinations toward explaining the degree of protection. Using conservative assumptions, an M. galloprovincialis CDGT Cu EC50 of 3.7 µg/L and corresponding criterion maximum concentration CDGT Cu of 1.8 µg/L, for universal application by regulatory compliance-monitoring programs, are proposed as a superior approach toward both integration of dynamic water quality over effective exposure periods and quantification of biologically relevant trace Cu speciation. Environ Toxicol Chem 2020;39:873-881. © 2020 SETAC.


Subject(s)
Copper/toxicity , Environmental Monitoring/methods , Mytilus/drug effects , Seawater/chemistry , Water Pollutants, Chemical/toxicity , Algorithms , Animals , Copper/analysis , Dose-Response Relationship, Drug , Larva/drug effects , Mytilus/growth & development , Toxicity Tests , Water Pollutants, Chemical/analysis , Water Quality
6.
Environ Toxicol Chem ; 39(1): 229-239, 2020 01.
Article in English | MEDLINE | ID: mdl-31622513

ABSTRACT

To assess potential impacts on receiving systems, associated with storm water contaminants, laboratory 10-d amphipod (Eohaustorius estuarius) survival toxicity tests were performed using intact sediment cores collected from Paleta Creek (San Diego Bay, CA, USA) on 5 occasions between 2015 and 2017. The approach included deposition-associated sediment particles collected from sediment traps placed at each of 4 locations during the 2015 to 2016 wet seasons. The bioassays demonstrated wet season toxicity, especially closest to the creek mouth, and greater mortality associated with particles deposited in the wet season compared with dry season samples. Grain size analysis of sediment trap material indicated coarser sediment at the mouth of the creek and finer sediment in the outer depositional areas. Contaminant concentrations of metals (Cd, Cu, Hg, Ni, Pb, and Zn) and organic compounds (polycyclic aromatic hydrocarbons [PAHs], polychlorinated biphenyls [PCBs], and pesticides) were quantified to assess possible causes of toxicity. Contaminant concentrations were determined in the top 5 cm of sediment and porewater (using passive samplers). Whereas metals, PAHs, and PCBs were rarely detected at sufficient concentrations to elicit a response, pyrethroid pesticides were highly correlated with amphipod toxicity. Summing individual pyrethroid constituents using a toxic unit approach suggested that toxicity to E. estuarius could be associated with pyrethroids. This unique test design allowed delineation of spatial and temporal differences in toxicity, suggesting that storm water discharge from Paleta Creek may be the source of seasonal toxicity. Environ Toxicol Chem 2019;39:229-239. © 2019 SETAC.


Subject(s)
Amphipoda/drug effects , Bays/chemistry , Environmental Monitoring/methods , Geologic Sediments/chemistry , Seasons , Water Pollutants, Chemical/toxicity , Animals , California , Toxicity Tests , Water Pollutants, Chemical/analysis
7.
Environ Toxicol Chem ; 38(5): 1029-1034, 2019 05.
Article in English | MEDLINE | ID: mdl-30840314

ABSTRACT

Diffusive gradient in thin films (DGT) potentially better quantifies bioavailable copper (Cu) in seawater. Laboratory exposure of DGTs and Mytilus galloprovincialis embryos at varying concentrations of dissolved organic carbon and Cu were performed to resolve the degree to which mimicry of toxicity buffering occurs in passive sampler quantification. The results provide preliminary median effect concentrations (EC50s) ranging from 4.8 to 11.5 µg/L as CDGT Cu over the span of 0.896 to 8.36 mg/L DOC. Environ Toxicol Chem 2019;00:1-6. Published 2019 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Subject(s)
Carbon/toxicity , Copper/toxicity , Embryo, Nonmammalian/drug effects , Mytilus/enzymology , Animals , Mytilus/drug effects , Seawater , Solubility , Water Pollutants, Chemical/toxicity
8.
Ecotoxicology ; 28(1): 117-131, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30547329

ABSTRACT

Hydrodynamics and pollution affect estuarine populations, but their ecological effects have rarely been studied in combination. We conducted two laboratory experiments to quantify whether predator-prey interactions between California killifish, Fundulus parvipinnis, and the polychaete Polydora cornuta vary with flow speed and chlorpyrifos exposure. In one experiment, only F. parvipinnis was exposed to chlorpyrifos; in the other, only P. cornuta was exposed. The flume included a 300-cm2 area of sediment with 24 P. cornuta in a central patch (98 cm2). We videotaped groups of three killifish for 50 min at one of four flow speeds (6, 9, 12, or 15 cm/s) and recorded the proportion of bites directed at the prey patch. Unexposed killifish directed 70% of their bites at the prey patch at 6 cm/s, and prey-patch selection decreased as flow increased. Killifish exposed to chlorpyrifos directed 41% of their bites at the prey patch at 6 cm/s with reduced prey-patch selection relative to unexposed fish at 9 and 12 cm/s. At 15 cm/s, both exposed and unexposed fish displayed non-selective biting. Worms were videotaped to quantify their deposit- and suspension-feeding activities. Exposing worms to chlorpyrifos reduced total feeding activity by ~30%. Suspension feeding was more common at faster flow speeds, but the time worms spent suspension feeding relative to deposit feeding was unaffected by chlorpyrifos. No behavioral changes were noted in either species when the other was exposed to chlorpyrifos. This study highlights how hydrodynamic conditions can alter the relative importance of a toxicant's effects on predator-prey interactions.


Subject(s)
Chlorpyrifos/adverse effects , Feeding Behavior/drug effects , Food Chain , Fundulidae/physiology , Polychaeta/drug effects , Water Movements , Water Pollutants, Chemical/adverse effects , Animals , Dose-Response Relationship, Drug , Insecticides/adverse effects , Random Allocation
9.
Nat Commun ; 3: 620, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22233630

ABSTRACT

The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on the Mid-Cayman spreading centre. The Von Damm Vent Field is located on the upper slopes of an oceanic core complex at a depth of 2,300 m. High-temperature venting in this off-axis setting suggests that the global incidence of vent fields may be underestimated. At a depth of 4,960 m on the Mid-Cayman spreading centre axis, the Beebe Vent Field emits copper-enriched fluids and a buoyant plume that rises 1,100 m, consistent with >400 °C venting from the world's deepest known hydrothermal system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic vents.


Subject(s)
Hydrothermal Vents , Water Microbiology , Animals , Biota , Caribbean Region , Decapoda , Ecosystem , Geography , Hot Temperature , Molecular Sequence Data , Oceans and Seas , Phylogeny , Polymerase Chain Reaction , Seawater , Temperature , X-Ray Diffraction
10.
Science ; 312(5776): 1016-20, 2006 May 19.
Article in English | MEDLINE | ID: mdl-16627698

ABSTRACT

Sampling an intact sequence of oceanic crust through lavas, dikes, and gabbros is necessary to advance the understanding of the formation and evolution of crust formed at mid-ocean ridges, but it has been an elusive goal of scientific ocean drilling for decades. Recent drilling in the eastern Pacific Ocean in Hole 1256D reached gabbro within seismic layer 2, 1157 meters into crust formed at a superfast spreading rate. The gabbros are the crystallized melt lenses that formed beneath a mid-ocean ridge. The depth at which gabbro was reached confirms predictions extrapolated from seismic experiments at modern mid-ocean ridges: Melt lenses occur at shallower depths at faster spreading rates. The gabbros intrude metamorphosed sheeted dikes and have compositions similar to the overlying lavas, precluding formation of the cumulate lower oceanic crust from melt lenses so far penetrated by Hole 1256D.

SELECTION OF CITATIONS
SEARCH DETAIL
...