Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Exp Med Biol ; 1366: 65-85, 2022.
Article in English | MEDLINE | ID: mdl-35412135

ABSTRACT

The discovery of the G-protein coupled-receptor (GPCR) CXCR4 as a major coreceptor of HIV-1 entry about three decades ago explained why the chemokine SDF-1/CXCL12 inhibits specific viral strains. The knowledge that RANTES, MlP-1α, and MlP-1ß specifically inhibit other primary HIV-1 strains allowed the rapid discovery of CCR5 as second major viral coreceptor and explained why individuals with deletions in CCR5 are protected against sexual HIV-1 transmission. Here, we provide an update on endogenous ligands of GPCRs that act as endogenous inhibitors of HIV-1, HIV-2, and simian immunodeficiency virus (SIV) entry. In addition, we summarize the development of optimized derivatives of endogenous GPCR ligands and their perspectives as antiviral agents and beyond. Finally, we provide examples for other endogenous peptides that may contribute to our innate immune defense against HIV-1 and other viral pathogens and offer prospects for preventive or therapeutic development.


Subject(s)
HIV Fusion Inhibitors , HIV Infections , HIV-1 , Animals , HIV Fusion Inhibitors/pharmacology , HIV Fusion Inhibitors/therapeutic use , HIV Infections/drug therapy , HIV-1/metabolism , HIV-1/physiology , HIV-2/metabolism , HIV-2/physiology , Humans , Ligands , Peptides/therapeutic use , Receptors, CCR5 , Receptors, G-Protein-Coupled/therapeutic use , Signal Transduction , Simian Immunodeficiency Virus
2.
STAR Protoc ; 2(4): 100781, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34405154

ABSTRACT

We present a protocol for analyzing the impact of SARS-CoV-2 proteins in interferon signaling using luciferase reporter assays. Here, the induction of defined promoters can be quantitatively assessed with high sensitivity and broad linear range. The results are similar to those obtained using qPCR to measure endogenous mRNA induction. The assay requires stringent normalization and confirmation of the results in more physiological settings. The protocol is adaptable for other viruses and other innate immune stimuli. For complete details on the use and execution of this protocol, please refer to Hayn et al. (2021).


Subject(s)
COVID-19/pathology , Gene Expression Regulation, Viral/drug effects , Interferons/pharmacology , Luciferases/metabolism , RNA, Messenger/metabolism , SARS-CoV-2/metabolism , Viral Proteins/metabolism , Antiviral Agents/pharmacology , COVID-19/metabolism , COVID-19/virology , Humans , Luciferases/genetics , Promoter Regions, Genetic , RNA, Messenger/genetics , SARS-CoV-2/drug effects , Viral Proteins/genetics , COVID-19 Drug Treatment
3.
Autophagy ; 17(9): 2659-2661, 2021 09.
Article in English | MEDLINE | ID: mdl-34281462

ABSTRACT

As part of innate immune defenses, macroautophagy/autophagy targets viruses and viral components for lysosomal degradation and exposes pathogen-associated molecular patterns to facilitate recognition. However, viruses evolved sophisticated strategies to antagonize autophagy and even exploit it to promote their replication. In our recent study, we systematically analyzed the impact of individual SARS-CoV-2 proteins on autophagy. We showed that E, M, ORF3a, and ORF7a cause an accumulation of autophagosomes, whereas Nsp15 prevents the efficient formation of autophagosomes. Consequently, autophagic degradation of SQSTM1/p62 is decreased in the presence of E, ORF3a, ORF7a, and Nsp15. Notably, M does not alter SQSTM1 protein levels and colocalizes with accumulations of LC3B-positive membranes not resembling vesicles. Infection with SARS-CoV-2 prevents SQSTM1 degradation and increases lipidation of LC3B, indicating overall that the infection causes a reduction of autophagic flux. Our mechanistic analyses showed that the accessory proteins ORF3a and ORF7a both block autophagic degradation but use different strategies. While ORF3a prevents the fusion between autophagosomes and lysosomes, ORF7a reduces the acidity of lysosomes. In summary, we found that Nsp15, E, M, ORF3a, and ORF7a of SARS-CoV-2 manipulate cellular autophagy, and we determined the molecular mechanisms of ORF3a and ORF7a.


Subject(s)
COVID-19 , SARS-CoV-2 , Autophagosomes , Autophagy , Humans , Lysosomes
4.
Cell Rep ; 35(7): 109126, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33974846

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades most innate immune responses but may still be vulnerable to some. Here, we systematically analyze the impact of SARS-CoV-2 proteins on interferon (IFN) responses and autophagy. We show that SARS-CoV-2 proteins synergize to counteract anti-viral immune responses. For example, Nsp14 targets the type I IFN receptor for lysosomal degradation, ORF3a prevents fusion of autophagosomes and lysosomes, and ORF7a interferes with autophagosome acidification. Most activities are evolutionarily conserved. However, SARS-CoV-2 Nsp15 antagonizes IFN signaling less efficiently than the orthologs of closely related RaTG13-CoV and SARS-CoV-1. Overall, SARS-CoV-2 proteins counteract autophagy and type I IFN more efficiently than type II or III IFN signaling, and infection experiments confirm potent inhibition by IFN-γ and -λ1. Our results define the repertoire and selected mechanisms of SARS-CoV-2 innate immune antagonists but also reveal vulnerability to type II and III IFN that may help to develop safe and effective anti-viral approaches.


Subject(s)
COVID-19/virology , SARS-CoV-2/immunology , Viral Proteins/immunology , Animals , Antiviral Agents/pharmacology , Autophagosomes/immunology , Autophagy/immunology , COVID-19/immunology , Cell Line , Chlorocebus aethiops , Exoribonucleases/immunology , HEK293 Cells , HeLa Cells , Humans , Immune Evasion , Immunity, Innate , Interferon Type I/metabolism , Interferons/metabolism , Receptor, Interferon alpha-beta/antagonists & inhibitors , Receptor, Interferon alpha-beta/immunology , SARS-CoV-2/pathogenicity , Vero Cells , Viral Nonstructural Proteins/immunology
5.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33431697

ABSTRACT

GPR15 is a G protein-coupled receptor (GPCR) proposed to play a role in mucosal immunity that also serves as a major entry cofactor for HIV-2 and simian immunodeficiency virus (SIV). To discover novel endogenous GPR15 ligands, we screened a hemofiltrate (HF)-derived peptide library for inhibitors of GPR15-mediated SIV infection. Our approach identified a C-terminal fragment of cystatin C (CysC95-146) that specifically inhibits GPR15-dependent HIV-1, HIV-2, and SIV infection. In contrast, GPR15L, the chemokine ligand of GPR15, failed to inhibit virus infection. We found that cystatin C fragments preventing GPR15-mediated viral entry do not interfere with GPR15L signaling and are generated by proteases activated at sites of inflammation. The antiretroviral activity of CysC95-146 was confirmed in primary CD4+ T cells and is conserved in simian hosts of SIV infection. Thus, we identified a potent endogenous inhibitor of GPR15-mediated HIV and SIV infection that does not interfere with the physiological function of this GPCR.


Subject(s)
Cystatin C/genetics , HIV Infections/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, Peptide/genetics , Simian Acquired Immunodeficiency Syndrome/genetics , Animals , HIV Infections/pathology , HIV Infections/virology , HIV-1/genetics , HIV-1/pathogenicity , Humans , Receptors, Virus/genetics , Signal Transduction/genetics , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/pathogenicity , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Virus Internalization
6.
Science ; 369(6508): 1249-1255, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32680882

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic. A major virulence factor of SARS-CoVs is the nonstructural protein 1 (Nsp1), which suppresses host gene expression by ribosome association. Here, we show that Nsp1 from SARS-CoV-2 binds to the 40S ribosomal subunit, resulting in shutdown of messenger RNA (mRNA) translation both in vitro and in cells. Structural analysis by cryo-electron microscopy of in vitro-reconstituted Nsp1-40S and various native Nsp1-40S and -80S complexes revealed that the Nsp1 C terminus binds to and obstructs the mRNA entry tunnel. Thereby, Nsp1 effectively blocks retinoic acid-inducible gene I-dependent innate immune responses that would otherwise facilitate clearance of the infection. Thus, the structural characterization of the inhibitory mechanism of Nsp1 may aid structure-based drug design against SARS-CoV-2.


Subject(s)
Betacoronavirus/chemistry , Immune Evasion , Immunity, Innate , Protein Biosynthesis , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Betacoronavirus/immunology , Betacoronavirus/metabolism , Betacoronavirus/physiology , Binding Sites , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cryoelectron Microscopy , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , Humans , Interferon-beta/genetics , Interferon-beta/metabolism , Models, Molecular , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Protein Binding , Protein Domains , Protein Interaction Domains and Motifs , Protein Structure, Secondary , RNA, Messenger/metabolism , Receptors, Immunologic , Ribosome Subunits, Small, Eukaryotic/chemistry , Ribosome Subunits, Small, Eukaryotic/metabolism , SARS-CoV-2
7.
Nat Commun ; 9(1): 2207, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29880824

ABSTRACT

Zika virus (ZIKV) causes severe birth defects and can be transmitted via sexual intercourse. Semen from ZIKV-infected individuals contains high viral loads and may therefore serve as an important vector for virus transmission. Here we analyze the effect of semen on ZIKV infection of cells and tissues derived from the anogenital region. ZIKV replicates in all analyzed cell lines, primary cells, and endometrial or vaginal tissues. However, in the presence of semen, infection by ZIKV and other flaviviruses is potently inhibited. We show that semen prevents ZIKV attachment to target cells, and that an extracellular vesicle preparation from semen is responsible for this anti-ZIKV activity. Our findings suggest that ZIKV transmission is limited by semen. As such, semen appears to serve as a protector against sexual ZIKV transmission, despite the availability of highly susceptible cells in the anogenital tract and high viral loads in this bodily fluid.


Subject(s)
Semen/immunology , Sexually Transmitted Diseases, Viral/transmission , Virus Attachment , Zika Virus Infection/transmission , Zika Virus/physiology , Animals , Cell Line, Tumor , Chlorocebus aethiops , Extracellular Vesicles/immunology , Female , Fibroblasts , Genitalia/cytology , Healthy Volunteers , Humans , Inhibitory Concentration 50 , Male , Primary Cell Culture , RNA, Viral/isolation & purification , Semen/cytology , Semen/virology , Sexually Transmitted Diseases, Viral/virology , Vero Cells , Viral Load/immunology , Virus Replication/immunology , Zika Virus/isolation & purification , Zika Virus Infection/immunology , Zika Virus Infection/virology
8.
Bioconjug Chem ; 28(4): 1260-1270, 2017 04 19.
Article in English | MEDLINE | ID: mdl-28300392

ABSTRACT

Retroviral gene transfer is the method of choice for the stable introduction of genetic material into the cellular genome. However, efficient gene transfer is often limited by low transduction rates of the viral vectors. We have recently described a 12-mer peptide, termed EF-C, that forms amyloid-like peptide nanofibrils (PNF), strongly increasing viral transduction efficiencies. These nanofibrils are polycationic and bind negatively charged membranes of virions and cells, thereby overcoming charge repulsions and resulting in increased rates of virion attachment and gene transfer. EF-C PNF enhance vector transduction more efficiently than other soluble additives and offer prospects for clinical applications. However, while the transduction-enhancing activity of PNF has been well-characterized, the exact mechanism and the kinetics underlying infection enhancement as well as the cellular fate of the fibrils are hardly explored. This is partially due to the fact that current labeling techniques for PNF rely on amyloid probes that cause high background staining or lose signal intensities after cellular uptake. Here, we sought to generate EF-C PNF covalently coupled with fluorescent labels. To achieve such covalent bioconjugates, the free amino groups of the EF-C peptide were coupled to the ATTO 495 or 647N NHS ester dyes. When small amounts of the labeled peptides were mixed with a 100- to 10 000-fold excess of the native peptide, PNF formed that were morphologically indistinguishable from those derived from the unlabeled peptide. The fluorescence of the fibrils could be readily detected using fluorescence spectroscopy, microscopy, and flow cytometry. In addition, labeled and nonlabeled fibrils captured viral particles and increased retroviral transduction with similar efficacy. These covalently fluorescence-labeled PNF are valuable tools with which to elucidate the mechanism(s) underlying transduction attachment and the fate of the fibrils in cells, tissues, and animal models.


Subject(s)
Fluorescent Dyes/chemistry , Gene Transfer Techniques , Nanofibers/chemistry , Peptides/chemistry , Retroviridae , Spectrometry, Fluorescence , Transduction, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...