Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
J Chem Phys ; 148(10): 104108, 2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29544310

ABSTRACT

An ab initio study of the effects of implicit and explicit hosts on the excited state properties of pentacene and its nitrogen-based derivatives has been performed using ground state density functional theory (DFT), time-dependent DFT, and ΔSCF. We observe a significant solvatochromic redshift in the excitation energy of the lowest singlet state (S1) of pentacene from inclusion in a p-terphenyl host compared to vacuum; for an explicit host consisting of six nearest neighbour p-terphenyls, we obtain a redshift of 65 meV while a conductor-like polarisable continuum model (CPCM) yields a 78 meV redshift. Comparison is made between the excitonic properties of pentacene and four of its nitrogen-based analogs, 1,8-, 2,9-, 5,12-, and 6,13-diazapentacene with the latter found to be the most distinct due to local distortions in the ground state electronic structure. We observe that a CPCM is insufficient to fully understand the impact of the host due to the presence of a mild charge-transfer (CT) coupling between the chromophore and neighbouring p-terphenyls, a phenomenon which can only be captured using an explicit model. The strength of this CT interaction increases as the nitrogens are brought closer to the central acene ring of pentacene.

3.
J Chem Phys ; 146(12): 124504, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28388154

ABSTRACT

The solvatochromic shift, as well as the change in colour of the simple organic dye nile red, is studied in two polar and two non-polar solvents in the context of large-scale time-dependent density-functional theory (TDDFT) calculations treating large parts of the solvent environment from first principles. We show that an explicit solvent representation is vital to resolve absorption peak shifts between nile red in n-hexane and toluene, as well as acetone and ethanol. The origin of the failure of implicit solvent models for these solvents is identified as being due to the strong solute-solvent interactions in form of π-stacking and hydrogen bonding in the case of toluene and ethanol. We furthermore demonstrate that the failures of the computationally inexpensive Perdew-Burke-Ernzerhof (PBE) functional in describing some features of the excited state potential energy surface of the S1 state of nile red can be corrected for in a straightforward fashion, relying only on a small number of calculations making use of more sophisticated range-separated hybrid functionals. The resulting solvatochromic shifts and predicted colours are in excellent agreement with experiment, showing the computational approach outlined in this work to yield very robust predictions of optical properties of dyes in solution.

4.
Environ Sci Process Impacts ; 18(10): 1359, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27711878

ABSTRACT

Correction for 'The biology of environmental stress: molecular biomarkers in Sydney rock oysters (Saccostrea glomerata)' by D. A. Raftos et al., Environ. Sci.: Processes Impacts, 2016, 18, 1129-1139.

5.
Environ Sci Process Impacts ; 18(9): 1129-39, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27548823

ABSTRACT

This review describes our recent work on environmental stress in Sydney rock oysters, focusing on the identification of molecular biomarkers for ecotoxicological analysis. We begin by describing the environmental pressures facing coastal estuaries in Australia, with particular reference to Sydney Harbour. After providing that context, we summarise our transcriptional and proteomic analyses of Sydney rock oysters responding to chemical contamination and other forms of environmental stress. This work has shown that the intracellular processes of oysters are highly responsive to environmental threats. Our data agree with the broader literature, which suggests that there is a highly conserved intracellular stress response in oysters involving a limited number of biological processes. We conclude that many effective molecular markers for environmental biomonitoring are likely to lie within these biological pathways.


Subject(s)
Environmental Monitoring , Ostreidae/physiology , Stress, Physiological , Water Pollutants, Chemical/analysis , Animals , Australia , Biomarkers/metabolism , Estuaries , Gene Expression Profiling , Ostreidae/metabolism , Proteomics
6.
Nat Commun ; 7: 12375, 2016 08 05.
Article in English | MEDLINE | ID: mdl-27491515

ABSTRACT

It is rarely the case that a single electron affects the behaviour of several hundred thousands of atoms. Here we demonstrate a phenomenon where this happens. The key role is played by topological insulators-materials that have surface states protected by time-reversal symmetry. Such states are delocalized over the surface and are immune to its imperfections in contrast to ordinary insulators. For topological insulators, the effects of these surface states will be more strongly pronounced in the case of nanoparticles. Here we show that under the influence of light a single electron in a topologically protected surface state creates a surface charge density similar to a plasmon in a metallic nanoparticle. Such an electron can act as a screening layer, which suppresses absorption inside the particle. In addition, it can couple phonons and light, giving rise to a previously unreported topological particle polariton mode. These effects may be useful in the areas of plasmonics, cavity electrodynamics and quantum information.

8.
J Phys Condens Matter ; 28(19): 195202, 2016 May 18.
Article in English | MEDLINE | ID: mdl-27094207

ABSTRACT

Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree with those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. Finally, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable.

9.
J Chem Theory Comput ; 12(4): 1853-61, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-26967019

ABSTRACT

In this work we study the solvatochromic shift of a selected low-energy excited state of alizarin in water by using a linear-scaling implementation of large-scale time-dependent density functional theory (TDDFT). While alizarin, a small organic dye, is chosen as a simple example of solute-solvent interactions, the findings presented here have wider ramifications for the realistic modeling of dyes, paints, and pigment-protein complexes. We find that about 380 molecules of explicit water need to be considered in order to yield an accurate representation of the solute-solvent interaction and a reliable solvatochromic shift. By using a novel method of constraining the TDDFT excitation vector, we confirm that the origin of the slow convergence of the solvatochromic shift with system size is due to two different effects. The first factor is a strong redshift of the excitation due to an explicit delocalization of a small fraction of the electron and the hole from the alizarin onto the water, which is mainly confined to within a distance of 7 Å from the alizarin molecule. The second factor can be identified as long-range electrostatic influences of water molecules beyond the 7 Å region on the ground-state properties of alizarin. We also show that these electrostatic influences are not well reproduced by a QM/MM model, suggesting that full QM studies of relatively large systems may be necessary in order to obtain reliable results.

10.
J Phys Condens Matter ; 28(7): 074003, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26808452

ABSTRACT

We report a linear-scaling density functional theory (DFT) study of the structure, wall-polarization absolute band-alignment and optical absorption of several, recently synthesized, open-ended imogolite (Imo) nanotubes (NTs), namely single-walled (SW) aluminosilicate (AlSi), SW aluminogermanate (AlGe), SW methylated aluminosilicate (AlSi-Me), and double-walled (DW) AlGe NTs. Simulations with three different semi-local and dispersion-corrected DFT-functionals reveal that the NT wall-polarization can be increased by nearly a factor of four going from SW-AlSi-Me to DW-AlGe. Absolute vacuum alignment of the NT electronic bands and comparison with those of rutile and anatase TiO2 suggest that the NTs may exhibit marked propensity to both photo-reduction and hole-scavenging. Characterization of the NTs' band-separation and optical properties reveal the occurrence of (near-)UV inside-outside charge-transfer excitations, which may be effective for electron-hole separation and enhanced photocatalytic activity. Finally, the effects of the NTs' wall-polarization on the absolute alignment of electron and hole acceptor states of interacting water (H2O) molecules are quantified and discussed.


Subject(s)
Aluminum Silicates/chemistry , Germanium/chemistry , Nanotubes/chemistry , Quantum Theory , Titanium/chemistry , Catalysis , Chemistry, Physical , Electrons , Humans , Models, Molecular , Molecular Structure , Surface Properties , Ultraviolet Rays , Water/chemistry
11.
J Chem Phys ; 143(20): 204107, 2015 Nov 28.
Article in English | MEDLINE | ID: mdl-26627950

ABSTRACT

We present a solution of the full time-dependent density-functional theory (TDDFT) eigenvalue equation in the linear response formalism exhibiting a linear-scaling computational complexity with system size, without relying on the simplifying Tamm-Dancoff approximation (TDA). The implementation relies on representing the occupied and unoccupied subspaces with two different sets of in situ optimised localised functions, yielding a very compact and efficient representation of the transition density matrix of the excitation with the accuracy associated with a systematic basis set. The TDDFT eigenvalue equation is solved using a preconditioned conjugate gradient algorithm that is very memory-efficient. The algorithm is validated on a small test molecule and a good agreement with results obtained from standard quantum chemistry packages is found, with the preconditioner yielding a significant improvement in convergence rates. The method developed in this work is then used to reproduce experimental results of the absorption spectrum of bacteriochlorophyll in an organic solvent, where it is demonstrated that the TDA fails to reproduce the main features of the low energy spectrum, while the full TDDFT equation yields results in good qualitative agreement with experimental data. Furthermore, the need for explicitly including parts of the solvent into the TDDFT calculations is highlighted, making the treatment of large system sizes necessary that are well within reach of the capabilities of the algorithm introduced here. Finally, the linear-scaling properties of the algorithm are demonstrated by computing the lowest excitation energy of bacteriochlorophyll in solution. The largest systems considered in this work are of the same order of magnitude as a variety of widely studied pigment-protein complexes, opening up the possibility of studying their properties without having to resort to any semiclassical approximations to parts of the protein environment.

12.
Chem Commun (Camb) ; 50(51): 6744-7, 2014 Jun 28.
Article in English | MEDLINE | ID: mdl-24827593

ABSTRACT

Despite voluminous research on the acid oxidation of carbon nanotubes (CNTs), there is a distinct lack of experimental results showing distributions of functional groups at the nanometre length scale. Here, functional peaks have been mapped across individual multi-walled CNTs with low-dose, monochromated electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM). Density functional theory simulations show that the EELS features are consistent with oxygenated functional groups, most likely carboxyl moieties.

13.
J Fish Biol ; 84(1): 225-30, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24383806

ABSTRACT

The timing of spawning and hatching, larval durations and growth exhibited by juvenile brill Scophthalmus rhombus captured along the Irish west coast were estimated using otolith microstructure analysis. Scophthalmus rhombus were estimated to have hatched between February and May, with fish settling onto nursery grounds between March and June. Fish collected later on in the season exhibited higher otolith growth rates in comparison to earlier collected fish. This is the first study to describe the early life history of a commercially valuable but understudied flatfish species.


Subject(s)
Flatfishes/growth & development , Animals , Ireland , Larva/growth & development , Otolithic Membrane/anatomy & histology , Seasons
14.
J Chem Phys ; 139(6): 064104, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23947840

ABSTRACT

We present an implementation of time-dependent density-functional theory (TDDFT) in the linear response formalism enabling the calculation of low energy optical absorption spectra for large molecules and nanostructures. The method avoids any explicit reference to canonical representations of either occupied or virtual Kohn-Sham states and thus achieves linear-scaling computational effort with system size. In contrast to conventional localised orbital formulations, where a single set of localised functions is used to span the occupied and unoccupied state manifold, we make use of two sets of in situ optimised localised orbitals, one for the occupied and one for the unoccupied space. This double representation approach avoids known problems of spanning the space of unoccupied Kohn-Sham states with a minimal set of localised orbitals optimised for the occupied space, while the in situ optimisation procedure allows for efficient calculations with a minimal number of functions. The method is applied to a number of medium sized organic molecules and a good agreement with traditional TDDFT methods is observed. Furthermore, linear scaling of computational cost with system size is demonstrated on (10,0) carbon nanotubes of different lengths.

15.
J Fish Biol ; 79(7): 1866-82, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22141892

ABSTRACT

On sandy beach nursery grounds along the west coast of Ireland, 0 year-group turbot Scophthalmus maximus were found to consume six types of crustaceans, in addition to polychaetes. The 0 year-group brill Scophthalmus rhombus fed almost exclusively on mysids, even though nine taxonomic prey groups were identified in the sediment across the investigated beaches. Both species avoided non-motile organisms such as gastropods and bivalves, which were present in high abundances in the sediment and their growth and condition was not significantly related to the quantity or type of prey consumed, temperature or salinity. A high incidence of feeding was detected for both species over the duration of the study, suggesting that food was not limiting on west of Ireland nursery grounds. Temporal partitioning of settlement was detected between S. maximus and S. rhombus, indicating that inter-specific competition for food does not occur between these two flatfish species on west of Ireland nursery grounds.


Subject(s)
Diet/veterinary , Feeding Behavior/physiology , Flatfishes/physiology , Animals , Fisheries , Flatfishes/growth & development , Gastrointestinal Contents , Ireland , Salinity , Temperature , Time Factors
16.
J Chem Phys ; 133(11): 114111, 2010 Sep 21.
Article in English | MEDLINE | ID: mdl-20866130

ABSTRACT

We present calculations of formation energies of defects in an ionic solid (Al(2)O(3)) extrapolated to the dilute limit, corresponding to a simulation cell of infinite size. The large-scale calculations required for this extrapolation are enabled by developments in the approach to parallel sparse matrix algebra operations, which are central to linear-scaling density-functional theory calculations. The computational cost of manipulating sparse matrices, whose sizes are determined by the large number of basis functions present, is greatly improved with this new approach. We present details of the sparse algebra scheme implemented in the ONETEP code using hierarchical sparsity patterns, and demonstrate its use in calculations on a wide range of systems, involving thousands of atoms on hundreds to thousands of parallel processes.

17.
J Phys Condens Matter ; 22(7): 074202, 2010 Feb 24.
Article in English | MEDLINE | ID: mdl-21386380

ABSTRACT

Atomic force calculations within the variational and diffusion quantum Monte Carlo methods are described. The advantages of calculating diffusion quantum Monte Carlo forces with the 'pure' rather than the 'mixed' probability distribution are discussed. An accurate and practical method for calculating forces using the pure distribution is presented and tested for the SiH molecule. The statistics of force estimators are explored and violations of the central limit theorem are found in some cases.


Subject(s)
Computer Simulation , Monte Carlo Method , Quantum Theory , Probability
18.
J Proteome Res ; 7(11): 4974-81, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18837535

ABSTRACT

Membrane protein analyses have been notoriously difficult due to hydrophobicity and the general low abundance of these proteins compared to their soluble cytosolic counterparts. Shotgun proteomics has become the preferred method for analyses of membrane proteins, in particular the recent development of peptide immobilized pH gradient isoelectric focusing (IPG-IEF) as the first dimension of two-dimensional shotgun proteomics. Recently, peptide IPG-IEF has been shown to be a valuable shotgun proteomics technique through the use of acidic narrow range IPG strips, which demonstrated that small acidic p I increments are rich in peptides. In this study, we assess the utility of both broad range (BR) (p I 3-10) and narrow range (NR) (p I 3.4-4.9) IPG strips for rat liver membrane protein analyses. Furthermore, the use of these IPG strips was evaluated using label-free quantitation to demonstrate that the identification of a subset of proteins can be improved using NR IPG strips. NR IPG strips provided 2603 protein assignments on average (with 826 integral membrane proteins (IMPs)) compared to BR IPG strips, which provided 2021 protein assignments on average (with 712 IMPs). Nonredundant protein analysis demonstrated that in total from all experiments, 4195 proteins (with 1301 IMPs) could be identified with 1428 of these proteins unique to NR IPG strips with only 636 from BR IPG strips. With the use of label-free quantitation methods, 1659 proteins were used for quantitative comparison of which 319 demonstrated statistically significant increases in normalized spectral abundance factors (NSAF) in NR IPG strips compared to 364 in BR IPG strips. In particular, a selection of six highly hydrophobic transmembrane proteins was observed to increase in NSAF using NR IPG strips. These results provide evidence for the use of alternative pH gradients in combination to improve the shotgun proteomic analysis of the membrane proteome.


Subject(s)
Cell Membrane/chemistry , Membrane Proteins/chemistry , Peptides/chemistry , Proteome , Animals , Hydrogen-Ion Concentration , Isoelectric Focusing , Liver/cytology , Models, Biological , Proteomics/methods , Rats , Rats, Inbred Strains
19.
J Proteome Res ; 7(3): 1036-45, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18211008

ABSTRACT

Membrane proteins are of particular interest in proteomics because of their potential therapeutic utility. Past proteomic approaches used to investigate membrane proteins have only been partially successful at providing a comprehensive analysis due to the inherently hydrophobic nature and low abundance for some of these proteins. Recently, these difficulties have been improved by analyzing membrane protein enriched samples using shotgun proteomics. In addition, the recent application of methanol-assisted trypsin digestion of membrane proteins has been shown to be a method to improve membrane protein identifications. In this study, a comparison of different concentrations of methanol was assessed for assisting membrane protein digestion with trypsin prior to analysis using a gel-based shotgun proteomics approach called peptide immobilized pH gradient isoelectric focusing (IPG-IEF). We demonstrate the use of peptide IEF on pH 3-10 IPG strips as the first dimension of two-dimensional shotgun proteomics for protein identifications from the membrane fraction of rat liver. Tryptic digestion of proteins was carried out in varying concentrations of methanol in 10 mM ammonium bicarbonate: 0% (v/v), 40% (v/v), and 60% (v/v). A total of 800 proteins were identified from 60% (v/v) methanol, which increased the protein identifications by 17% and 14% compared to 0% (v/v) methanol and 40% (v/v) methanol assisted digestion, respectively. In total, 1549 nonredundant proteins were identified from all three concentrations of methanol including 690 (42%) integral membrane proteins of which 626 of these proteins contained at least one transmembrane domain. Peptide IPG-IEF separation of peptides was successful as the peptides were separated into discrete pI regions with high resolution. The results from this study prove utility of 60% (v/v) methanol assisted digestion in conjunction with peptide IPG-IEF as an optimal shotgun proteomics technique for the separation and identification of previously unreported membrane proteins.


Subject(s)
Isoelectric Focusing/methods , Liver/chemistry , Membrane Proteins/chemistry , Peptides/chemistry , Proteome , Animals , Hydrogen-Ion Concentration , Rats
20.
Postgrad Med J ; 82(972): 693-6, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17068282

ABSTRACT

BACKGROUND: Hypogonadism in men may be secondary to renal failure and is well recognised in patients with end-stage renal disease. It is thought to contribute to the sexual dysfunction and osteoporosis experienced by these patients. However, the association between hypogonadism and lesser degrees of renal dysfunction is not well characterised. METHODS: The gonadal status of 214 male patients (mean age 56 (SD 18) years) attending a renal centre was studied; 62 of them were receiving haemodialysis and 22 continuous ambulatory peritoneal dialysis for end-stage renal disease, whereas 34 patients had functioning renal transplants and 96 patients were in the low-clearance phase. Non-fasting plasma was analysed for testosterone, follicle-stimulating hormone, luteinising hormone, sex hormone-binding globulin, parathyroid hormone and haemoglobin. Creatinine clearance was estimated in patients not on dialysis, and Kt/V and urea reduction ratio were assessed in patients on dialysis. Testosterone concentrations were classified as normal (>14 nmol/l), low-normal (10-14 nmol/l) or low (<10 nmol/l). RESULTS: 56 (26.2%) patients had significantly low testosterone levels and another 65 (30.3%) had low-normal levels. No significant changes were seen in sex hormone-binding globulin or gonadotrophin levels. Gonadal status was not correlated with haemoglobin level, parathyroid hormone level, creatinine clearance, or dialysis duration or adequacy. CONCLUSION: Over half of patients with renal failure, even in the pre-dialysis phase, have low or low-normal levels of testosterone, which may be a potentially reversible risk factor for osteoporosis and sexual dysfunction. These patients may be candidates for testosterone-replacement therapy, which has been shown to improve bone mineral-density and libido in men with low and low-normal testosterone levels.


Subject(s)
Hypogonadism/etiology , Renal Insufficiency/complications , Adolescent , Adult , Aged , Aged, 80 and over , Cross-Sectional Studies , Humans , Hypogonadism/blood , Male , Middle Aged , Renal Dialysis , Renal Insufficiency/blood , Testosterone/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...