Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 12(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38793767

ABSTRACT

SARS-CoV-2 vaccination-induced protection against infection is likely to be affected by functional antibody features. To understand the kinetics of antibody responses in healthy individuals after primary series and third vaccine doses, sera from the recipients of the two licensed SARS-CoV-2 mRNA vaccines were assessed for circulating anti-SARS-CoV-2 spike IgG levels and avidity for up to 6 months post-primary series and 9 months after the third dose. Following primary series vaccination, anti-SARS-CoV-2 spike IgG levels declined from months 1 to 6, while avidity increased through month 6, irrespective of the vaccine received. The third dose of either vaccine increased anti-SARS-CoV-2 spike IgG levels and avidity and appeared to enhance antibody level persistence-generating a slower rate of decline in the 3 months following the third dose compared to the decline seen after the primary series alone. The third dose of both vaccines induced significant avidity increases 1 month after vaccination compared to the avidity response 6 months post-primary series vaccination (p ≤ 0.001). A significant difference in avidity responses between the two vaccines was observed 6 months post-third dose, where the BNT162b2 recipients had higher antibody avidity levels compared to the mRNA-1273 recipients (p = 0.020).

2.
Microbiol Spectr ; : e0389822, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36927068

ABSTRACT

SARS-CoV-2 antibody testing is important for seroprevalence studies and for evaluating vaccine immune responses. We developed and validated a Luminex bead-based multiplex serology assay for measuring IgG levels of anti-SARS-CoV-2 antibodies against full-length spike (S), nucleocapsid (N), and receptor-binding domains (RBDs) of wild-type, RBD N501Y mutant, RBD E484K mutant, RBD triple mutant SARS-CoV-2 proteins, Sars-CoV-1, MERS-CoV, and common human coronaviruses, including SARS-CoV-2, OC43, 229E, HKU1, and NL63. Assay cutoff values, sensitivity, and specificity were determined using samples from 160 negative controls and 60 PCR-confirmed, SARS-CoV-2-infected individuals. The assay demonstrated sensitivities of 98.3%, 95%, and 100% and specificities of 100%, 99.4%, and 98.8% for anti-(S), -N, and -RBD, respectively. Results are expressed as IgG antibody concentrations in BAU/mL, using the WHO international standard (NIBSC code 20/136) for anti-SARS-CoV-2 IgG antibodies. When the multiplex assay was performed and compared with singleplex assays, the IgG antibody measurement geometric mean ratios were between 0.895 and 1.122, and no evidence of interference was observed between antigens. Lower and upper IgG concentration limits, based on accuracy (between 80% and 120%), precision (percent relative standard deviation, ≤25%), and sample dilutional linearity (between 75% and 125%), were used to establish the assay range. Precision was established by evaluating 24 individual human serum samples obtained from vaccinated and SARS-CoV-2-infected individuals. The assay provided reproducible, consistent results with typical coefficients of variation of ≤20% for all assays, irrespective of the run, day, or analyst. Results indicate the assay has high sensitivity and specificity and thus is appropriate for use in measuring SARS-CoV-2 IgG antibodies in infected and vaccinated individuals. IMPORTANCE The SARS-CoV-2 pandemic resulted in the development and validation of multiple serology tests with variable performance. While there are multiple SARS-CoV-2 serology tests to detect SARS-CoV-2 antibodies, the focus is usually either on only one antigen at a time or multiple proteins from only one SARS-CoV-2 variant. These tests usually do not evaluate antibodies against viral proteins from different SARS-CoV-2 variants or from other coronaviruses. Here, we evaluated a multiplex serology test based on Luminex technology, where antibodies against multiple domains of SARS-CoV-2 wild type, SARS-CoV-2 mutants, and common coronavirus antibodies are detected simultaneously in a single assay. This Luminex-based multiplex serology assay can enhance our understanding of the immune response to SARS-CoV-2 infection and vaccination.

SELECTION OF CITATIONS
SEARCH DETAIL
...