Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37624527

ABSTRACT

PURPOSE: Long-term administration of glucocorticoids (GCs) increases myocardial oxidative stress. 4-Hydroxynonenal (4-HNE) protein adducts, a marker of oxidative damage, have been associated with several cardiovascular diseases, including atherosclerosis, cardiac hypertrophy, cardiomyopathy, and ischemia-reperfusion injury. Exercise training has been shown to have a protective effect on the heart by lowering the level of oxidative stress in cardiomyocytes. Therefore, we aimed to investigate the effect of long-term dexamethasone treatment and exercise training on myocardial 4-HNE levels. METHODS: Twenty-four female Wistar albino rats were assigned to sedentary control-saline treated (C, n = 8), sedentary-dexamethasone treated (D, n = 8), and exercise training-dexamethasone treated (DE, n = 8) groups. Daily dexamethasone was injected for 28 days at a 1 mg kg-1 dose, while C animals were injected with the same volume of saline subcutaneously. DE animals underwent an exercise training protocol of 60 min/day, 5 days a week, at 25 m/min-1 (0% grade) for 28 days. Left ventricular 4-HNE, Hsp72 levels, and pHsp25/Hsp25 ratio were determined by Western blot. RESULTS: The administration of dexamethasone led to a significant elevation in 4-HNE levels in the myocardium of adult rats (p < 0.05; D vs. C). The concurrent implementation of exercise training impeded this increase (p > 0.05; DE vs. C). Exercise training induced a threefold increase in myocardial Hsp72 expression (p < 0.001; DE vs. C and D) and attenuated the dexamethasone-induced increase in Hsp25 phosphorylation (p < 0.05; C vs. D) (p < 0.001; DE vs. D). CONCLUSION: Our results indicate that long-term administration of dexamethasone is associated with an increase in cardiac 4-HNE levels, which is hindered by the addition of exercise training.

2.
Cardiovasc Drugs Ther ; 37(5): 1027-1029, 2023 10.
Article in English | MEDLINE | ID: mdl-35554772

ABSTRACT

PURPOSE: Glucocorticoids, which are widely prescribed around the world, cause cardiac remodeling in long-term treatment by triggering insulin resistance and increasing blood pressure. However, its role in cardiac remodeling remains unclear. Galectin-3 (gal-3) is a member of a beta-galactoside-binding animal lectins, upregulated as a result of insulin resistance and in the pressure-overloaded myocardium and regulate cardiac remodeling. We hypothesized that gal-3 may be upregulated in the myocardium with prolonged use of glucocorticoids and associated with cardiac hypertrophy. METHODS: To examine the involvement of glucocorticoids in gal-3 levels in rat myocardium, sixteen female Wistar Albino rats were assigned to control (C; n = 8) and dexamethasone (Dex; n = 8) groups. Daily dexamethasone was injected subcutaneously for 28 days at a dose of 1 mg.kg-1. Control animals were injected with the same volume of saline. The body weight and heart weights were determined. Gal-3 levels in myocardium were determined by Western blot. RESULTS: Our data shows that dexamethasone administration resulted in significant increase in heart weight (p < 0.05) and HW/BW ratios (p < 0.001) and 28 days of dexamethasone administration with the dose of 1 mg.kg-1 caused a twofold increase in the gal-3 expression in the left ventricle (p < 0.001). CONCLUSION: The finding of the current study is the first to show that dexamethasone causes an increase in gal-3 levels in myocardium. Our study provides an important step in the development of possible therapeutics by determining that dexamethasone causes an increase in gal-3 levels in the myocardium and raises awareness about the follow-up of patients receiving long-term glucocorticoid therapy.


Subject(s)
Galectin 3 , Insulin Resistance , Humans , Rats , Female , Animals , Galectin 3/metabolism , Glucocorticoids/pharmacology , Glucocorticoids/metabolism , Ventricular Remodeling/physiology , Rats, Wistar , Myocardium/metabolism , Dexamethasone/pharmacology , Dexamethasone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...