Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Mater ; 17(5)2022 08 11.
Article in English | MEDLINE | ID: mdl-35950736

ABSTRACT

The increasing need for tissue substitutes in reconstructive surgery spurs the development of engineering methods suited for clinical applications. Cell culture and tissue production traditionally require the use of fetal bovine serum (FBS) which is associated with various complications especially from a translational perspective. Using the self-assembly approach of tissue engineering, we hypothesized that all important parameters of tissue reconstruction can be maintained in a production system devoid of FBS from cell extraction to tissue reconstruction. We studied two commercially available serum-free medium (SFM) and xenogen-free serum-free medium (XSFM) for their impact on tissue reconstruction using human adipose-derived stem/stromal cells (ASCs) in comparison to serum-containing medium. Both media allowed higher ASC proliferation rates in primary cultures over five passages compared with 10% FBS supplemented medium while maintaining high expression of mesenchymal cell markers. For both media, we evaluated extracellular matrix production and deposition necessary to engineer manipulatable tissues using the self-assembly approach. Tissues produced in SFM exhibited a significantly increased thickness (up to 6.8-fold) compared with XSFM and FBS-containing medium. A detailed characterization of tissues produced under SFM conditions showed a substantial 50% reduction of production time without compromising key tissue features such as thickness, mechanical resistance and pro-angiogenic secretory capacities (plasminogen activator inhibitor 1, hepatocyte growth factor, vascular endothelial growth factor, angiopoietin-1) when compared to tissues produced in the control FBS-containing medium. Furthermore, we compared ASCs to the frequently used human dermal fibroblasts (DFs) in the SFM culture system. ASC-derived tissues displayed a 2.4-fold increased thickness compared to their DFs counterparts. In summary, we developed all-natural human substitutes using a production system compatible with clinical requirements. Under culture conditions devoid of bovine serum, the resulting engineered tissues displayed similar and even superior structural and functional properties over the classic FBS-containing culture conditions with a considerable 50% shortening of production time.


Subject(s)
Cell Culture Techniques , Vascular Endothelial Growth Factor A , Adipose Tissue , Cell Culture Techniques/methods , Cell Differentiation , Cell Proliferation , Cells, Cultured , Connective Tissue , Humans , Vascular Endothelial Growth Factor A/metabolism
2.
Differentiation ; 87(3-4): 172-81, 2014.
Article in English | MEDLINE | ID: mdl-24930038

ABSTRACT

The epithelial cells and Wharton׳s jelly cells (WJC) from the human umbilical cord have yet to be extensively studied in respect to their capacity to generate tissue-engineered substitutes for clinical applications. Our reconstruction strategy, based on the self-assembly approach of tissue engineering, allows the production of various types of living human tissues such as skin and cornea from a wide range of cell types originating from post-natal tissue sources. Here we placed epithelial cells and WJC from the umbilical cord in the context of a reconstructed skin substitute in combination with skin keratinocytes and fibroblasts. We compared the ability of the epithelial cells from both sources to generate a stratified, differentiated skin-like epithelium upon exposure to air when cultured on the two stromal cell types. Conversely, the ability of the WJC to behave as dermal fibroblasts, producing extracellular matrix and supporting the formation of a differentiated epithelium for both types of epithelial cells, was also investigated. Of the four types of constructs produced, the combination of WJC and keratinocytes was the most similar to skin engineered from dermal fibroblasts and keratinocytes. When cultured on dermal fibroblasts, the cord epithelial cells were able to differentiate in vitro into a stratified multilayered epithelium expressing molecules characteristic of keratinocyte differentiation after exposure to air, and maintaining the expression of keratins K18 and K19, typical of the umbilical cord epithelium. WJC were able to support the growth and differentiation of keratinocytes, especially at the early stages of air-liquid culture. In contrast, cord epithelial cells cultured on WJC did not form a differentiated epidermis when exposed to air. These results support the premise that the tissue from which cells originate can largely affect the properties and homoeostasis of reconstructed substitutes featuring both epithelial and stromal compartments.


Subject(s)
Cell Differentiation , Epidermal Cells , Mesenchymal Stem Cells/cytology , Tissue Engineering/methods , Umbilical Cord/cytology , Adult , Cells, Cultured , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Mesenchymal Stem Cells/metabolism
3.
Cells Tissues Organs ; 197(1): 37-54, 2013.
Article in English | MEDLINE | ID: mdl-22965075

ABSTRACT

The human umbilical cord (UC) has attracted interest as a source of cells for many research applications. UC solid tissues contain four cell types: epithelial, stromal, smooth muscle and endothelial cells. We have developed a unique protocol for the sequential extraction of all four cell types from a single UC, allowing tissue reconstruction using multiple cell types from the same source. By combining perfusion, immersion and explant techniques, all four cell types have been successfully expanded in monolayer cultures. We have also characterised epithelial and Wharton's jelly cells (WJC) by immunolabelling of specific proteins. Epithelial cell yields averaged at 2.3 × 10(5) cells per centimetre UC, and the cells expressed an unusual combination of keratins typical of simple, mucous and stratified epithelia. Stromal cells in the Wharton's jelly expressed desmin, α-smooth muscle actin, elastin, keratins (K12, K16, K18 and K19), vimentin and collagens. Expression patterns in cultured cells resembled those found in situ except for basement membrane components and type III collagen. These stromal cells featured a sustained proliferation rate up to passage 12 after thawing. The mesenchymal stem cell (MSC) character of the WJC was confirmed by their expression of typical MSC surface markers and by adipogenic and osteogenic differentiation assays. To emphasise and demonstrate their potential for regenerative medicine, UC cell types were successfully used to produce human tissue-engineered constructs. Both bilayered stromal/epithelial and vascular substitutes were produced, establishing the versatility and importance of these cells for research and therapeutic applications.


Subject(s)
Tissue Engineering/methods , Umbilical Cord/cytology , Cell Culture Techniques/methods , Cell Differentiation/physiology , Cell Separation/methods , Cells, Cultured , Epithelial Cells/cytology , Human Umbilical Vein Endothelial Cells/cytology , Humans , Mesenchymal Stem Cells/cytology , Stromal Cells/cytology , Umbilical Cord/metabolism
4.
Tissue Eng Part A ; 17(15-16): 2049-59, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21457095

ABSTRACT

There is a clinical need for better blood vessel substitutes, as current surgical procedures are limited by the availability of suitable autologous vessels and suboptimal behavior of synthetic grafts in small caliber arterial graft (<5 mm) applications. The aim of the present study was to compare the mechanical properties of arterial and venous tissue-engineered vascular constructs produced by the self-assembly approach using cells extracted from either the artery or vein harvested from the same human umbilical cord. The production of a vascular construct comprised of a media and an adventitia (TEVMA) was achieved by rolling a continuous tissue sheet containing both smooth muscle cells and adventitial fibroblasts grown contiguously in the same tissue culture plate. Histology and immunofluorescence staining were used to evaluate the structure and composition of the extracellular matrix of the vascular constructs. The mechanical strength was assessed by uniaxial tensile testing, whereas viscoelastic behavior was evaluated by stepwise stress-relaxation and by cyclic loading hysteresis analysis. Tensile testing showed that the use of arterial cells resulted in stronger and stiffer constructs when compared with those produced using venous cells. Moreover, cyclic loading demonstrated that constructs produced using arterial cells were able to bear higher loads for the same amount of strain when compared with venous constructs. These results indicate that cells isolated from umbilical cord can be used to produce vascular constructs. Arterial constructs possessed superior mechanical properties when compared with venous constructs produced using cells isolated from the same human donor. This study highlights the fact that smooth muscle cells and fibroblasts originating from different cell sources can potentially lead to distinct tissue properties when used in tissue engineering applications.


Subject(s)
Arteries/cytology , Blood Vessel Prosthesis , Materials Testing/methods , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Veins/cytology , Biomechanical Phenomena/physiology , Elasticity , Fluorescent Antibody Technique , Humans , Stress, Mechanical , Viscosity
5.
Methods Mol Biol ; 289: 103-10, 2005.
Article in English | MEDLINE | ID: mdl-15502175

ABSTRACT

The skin is a dynamic tissue in which terminally differentiated keratinocytes are replaced by the proliferation of new epithelial cells that will undergo differentiation. The rapid and continual turnover of skin throughout life depends on a cell population with unique characteristics: the stem cells. These cells are relatively undifferentiated, retain a high capacity for self-renewal throughout their lifetime, have a large proliferative potential, and are normally slow cycling. The long-term regeneration of grafted cultured epidermis indicates that epidermal stem cells are maintained in cultures. In animals they can be identified with 3H-thymidine or bromodeoxyuridine based on their property of slow cycling. The development of markers such as keratin 19 also permits their study in human tissues. In this chapter, protocols to study skin stem cells using their property of slow cycling and their expression of keratin 19 will be described in detail. The methods include the double labeling of tissues for keratin 19 and label-retaining cells (auto radiography of 3H-thymidine) in situ. The labeling of keratin 19 by immunofluorescence of by flow cytometry is described for cells in vitro.


Subject(s)
Epidermal Cells , Keratins/metabolism , Stem Cells/cytology , Animals , Autoradiography , Bromodeoxyuridine/chemistry , Cell Differentiation/physiology , Cells, Cultured , Epidermis/metabolism , Flow Cytometry , Immunohistochemistry , Mice , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...