Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Mol Biol Evol ; 39(2)2022 02 03.
Article in English | MEDLINE | ID: mdl-35084499

ABSTRACT

Considerable attention has recently been focused on the potential involvement of DNA methylation in regulating gene expression in cnidarians. Much of this work has been centered on corals, in the context of changes in methylation perhaps facilitating adaptation to higher seawater temperatures and other stressful conditions. Although first proposed more than 30 years ago, the possibility that DNA methylation systems function in protecting animal genomes against the harmful effects of transposon activity has largely been ignored since that time. Here, we show that transposons are specifically targeted by the DNA methylation system in cnidarians, and that the youngest transposons (i.e., those most likely to be active) are most highly methylated. Transposons in longer and highly active genes were preferentially methylated and, as transposons aged, methylation levels declined, reducing the potentially harmful side effects of CpG methylation. In Cnidaria and a range of other invertebrates, correlation between the overall extent of methylation and transposon content was strongly supported. Present transposon burden is the dominant factor in determining overall level of genomic methylation in a range of animals that diverged in or before the early Cambrian, suggesting that genome defense represents the ancestral role of CpG methylation.


Subject(s)
Cnidaria , DNA Methylation , Animals , Cnidaria/genetics , CpG Islands , Genome , Invertebrates/genetics
2.
Curr Biol ; 31(11): 2286-2298.e8, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33811819

ABSTRACT

Coral reefs are the epitome of species diversity, yet the number of described scleractinian coral species, the framework-builders of coral reefs, remains moderate by comparison. DNA sequencing studies are rapidly challenging this notion by exposing a wealth of undescribed diversity, but the evolutionary and ecological significance of this diversity remains largely unclear. Here, we present an annotated genome for one of the most ubiquitous corals in the Indo-Pacific (Pachyseris speciosa) and uncover, through a comprehensive genomic and phenotypic assessment, that it comprises morphologically indistinguishable but ecologically divergent lineages. Demographic modeling based on whole-genome resequencing indicated that morphological crypsis (across micro- and macromorphological traits) was due to ancient morphological stasis rather than recent divergence. Although the lineages occur sympatrically across shallow and mesophotic habitats, extensive genotyping using a rapid molecular assay revealed differentiation of their ecological distributions. Leveraging "common garden" conditions facilitated by the overlapping distributions, we assessed physiological and quantitative skeletal traits and demonstrated concurrent phenotypic differentiation. Lastly, spawning observations of genotyped colonies highlighted the potential role of temporal reproductive isolation in the limited admixture, with consistent genomic signatures in genes related to morphogenesis and reproduction. Overall, our findings demonstrate the presence of ecologically and phenotypically divergent coral species without substantial morphological differentiation and provide new leads into the potential mechanisms facilitating such divergence. More broadly, they indicate that our current taxonomic framework for reef-building corals may be scratching the surface of the ecologically relevant diversity on coral reefs, consequently limiting our ability to protect or restore this diversity effectively.


Subject(s)
Anthozoa/classification , Biodiversity , Coral Reefs , Tropical Climate , Animals , Anthozoa/genetics , Morphogenesis/genetics , Reproduction/genetics
3.
Dev Genes Evol ; 230(3): 227-238, 2020 05.
Article in English | MEDLINE | ID: mdl-32198667

ABSTRACT

Across the Bilateria, FGF/FGFR signaling is critical for normal development, and in both Drosophila and vertebrates, docking proteins are required to connect activated FGFRs with downstream pathways. While vertebrates use Frs2 to dock FGFR to the RAS/MAPK or PI3K pathways, the unrelated protein, downstream of FGFR (Dof/stumps/heartbroken), fulfills the corresponding function in Drosophila. To better understand the evolution of the signaling pathway downstream of FGFR, the available sequence databases were screened to identify Frs2, Dof, and other key pathway components in phyla that diverged early in animal evolution. While Frs2 homologues were detected only in members of the Bilateria, canonical Dof sequences (containing Dof, ankyrin, and SH2/SH3 domains) were present in cnidarians as well as bilaterians (but not in other animals or holozoans), correlating with the appearance of FGFR. Although these data suggested that Dof coupling might be ancestral, gene expression analysis in the cnidarian Hydra revealed that Dof is not upregulated in the zone of strong FGFRa and FGFRb expression at the bud base, where FGFR signaling controls detachment. In contrast, transcripts encoding other, known elements of FGFR signaling in Bilateria, namely the FGFR adaptors Grb2 and Crkl, which are acting downstream of Dof (and Frs2), as well as the guanyl nucleotide exchange factor Sos, and the tyrosine phosphatase Csw/Shp2, were strongly upregulated at the bud base. Our expression analysis, thus, identified transcriptional upregulation of known elements of FGFR signaling at the Hydra bud base indicating a highly conserved toolkit. Lack of transcriptional Dof upregulation raises the interesting question, whether Hydra FGFR signaling requires either of the docking proteins known from Bilateria.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Biological Evolution , Hydra/genetics , Hydra/metabolism , Receptors, Fibroblast Growth Factor/physiology , Animals , Cnidaria/genetics , Cnidaria/metabolism , GRB2 Adaptor Protein/physiology , Gene Expression Regulation, Developmental , Phylogeny , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/physiology , Signal Transduction , Son of Sevenless Proteins/physiology
5.
BMC Genomics ; 20(1): 148, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30786881

ABSTRACT

BACKGROUND: Coral reefs can experience salinity fluctuations due to rainfall and runoff; these events can have major impacts on the corals and lead to bleaching and mortality. On the Great Barrier Reef (GBR), low salinity events, which occur during summer seasons and can involve salinity dropping ~ 10 PSU correlate with declines in coral cover, and these events are predicted to increase in frequency and severity under future climate change scenarios. In other marine invertebrates, exposure to low salinity causes increased expression of genes involved in proteolysis, responses to oxidative stress, and membrane transport, but the effects that changes in salinity have on corals have so far received only limited attention. To better understand the coral response to hypo-osmotic stress, here we investigated the transcriptomic response of the coral Acropora millepora in both adult and juvenile life stages to acute (1 h) and more prolonged (24 h) exposure to low salinity. RESULTS: Differential gene expression analysis revealed the involvement of both common and specific response mechanisms in Acropora. The general response to environmental stressors included up-regulation of genes involved in the mitigation of macromolecular and oxidative damage, while up-regulation of genes involved in amino acid metabolism and transport represent specific responses to salinity stress. CONCLUSIONS: This study is the first comprehensive transcriptomic analysis of the coral response to low salinity stress and provides important insights into the likely consequences of heavy rainfall and runoff events on coral reefs.


Subject(s)
Anthozoa/genetics , Anthozoa/metabolism , Gene Expression Profiling , Proteostasis , Salinity , Stress, Physiological/genetics , Transcriptome , Amino Acids/metabolism , Animals , Computational Biology/methods , Endoplasmic Reticulum/metabolism , Gene Expression Regulation , Gene Ontology , Oxidative Stress , Proteolysis
6.
Dev Biol ; 446(1): 56-67, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30521809

ABSTRACT

Neuropeptides play critical roles in cnidarian development. However, although they are known to play key roles in settlement and metamorphosis, their temporal and spatial developmental expression has not previously been characterized in any coral. We here describe Acropora millepora LWamide and RFamide and their developmental expression from the time of their first appearance, using in situ hybridization and FMRFamide immunohistochemistry. AmRFamide transcripts first appear in the ectoderm toward the oral end of the planula larva following blastopore closure. This oral bias becomes less apparent as the planula develops. The cell bodies of AmRFamide-expressing cells are centrally located in the ectoderm, with narrow projections to the mesoglea and to the cell surface. As the planula approaches settlement, AmRFamide expression disappears and is undetectable in the newly settled polyp. Expressing cells then gradually reappear as the polyp develops, becoming particularly abundant on the tentacles. AmLWamide transcripts first appear in ectodermal cells of the developing planula, with minimal expression at its two ends. The cell bodies of expressing cells lie just above the mesoglea, in a position distinct from those of AmRFamide-expressing cells, and have a narrow projection extending across the ectoderm to its surface. AmLWamide-expressing cells persist for most of the planula stage, disappearing shortly before settlement, but later than AmRFamide-expressing cells. As is the case with AmRFamide, expressing cells are absent from the polyp immediately after settlement, reappearing later on its oral side. AmLWamide expression lags that of AmRFamide in both its disappearance and reappearance. Antibodies to FMRFamide stain cells in a pattern similar to that of the transcripts, but also cells in areas where there is no expression revealed by in situ hybridization, most notably at the aboral end of the planula and in the adult polyp. Adult polyps have numerous staining cells on the tentacles and oral discs, as well as an immunoreactive nerve ring around the mouth. There are scattered staining cells in the coenosarc between polyps and staining cells are abundant in the mesenterial filaments. The above results are discussed in the context of our knowledge of the behavior of coral planulae at the time of their settlement and metamorphosis. Corals are facing multiple environmental threats, and these results both highlight the need for, and bring us a step closer to, a mechanistic understanding of a process that is critical to their survival.


Subject(s)
Anthozoa/genetics , Gene Expression Regulation, Developmental , Metamorphosis, Biological/genetics , Neuropeptides/genetics , Amino Acid Sequence , Animals , Anthozoa/embryology , Anthozoa/metabolism , Ectoderm/embryology , Ectoderm/metabolism , In Situ Hybridization , Neuropeptides/metabolism , Protein Precursors/genetics , Protein Precursors/metabolism
7.
Genome Biol ; 19(1): 175, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30384840

ABSTRACT

BACKGROUND: Despite the biological and economic significance of scleractinian reef-building corals, the lack of large molecular datasets for a representative range of species limits understanding of many aspects of their biology. Within the Scleractinia, based on molecular evidence, it is generally recognised that there are two major clades, Complexa and Robusta, but the genomic bases of significant differences between them remain unclear. RESULTS: Draft genome assemblies and annotations were generated for three coral species: Galaxea fascicularis (Complexa), Fungia sp., and Goniastrea aspera (Robusta). Whilst phylogenetic analyses strongly support a deep split between Complexa and Robusta, synteny analyses reveal a high level of gene order conservation between all corals, but not between corals and sea anemones or between sea anemones. HOX-related gene clusters are, however, well preserved across all of these combinations. Differences between species are apparent in the distribution and numbers of protein domains and an apparent correlation between number of HSP20 proteins and stress tolerance. Uniquely amongst animals, a complete histidine biosynthesis pathway is present in robust corals but not in complex corals or sea anemones. This pathway appears to be ancestral, and its retention in the robust coral lineage has important implications for coral nutrition and symbiosis. CONCLUSIONS: The availability of three new coral genomes enabled recognition of a de novo histidine biosynthesis pathway in robust corals which is only the second identified biosynthetic difference between corals. These datasets provide a platform for understanding many aspects of coral biology, particularly the interactions of corals with their endosymbionts.


Subject(s)
Anthozoa/classification , Anthozoa/genetics , Biological Evolution , Genomics/methods , Animals , Genome , Genome, Mitochondrial , Phylogeny
8.
BMC Genomics ; 18(1): 612, 2017 Aug 14.
Article in English | MEDLINE | ID: mdl-28806970

ABSTRACT

BACKGROUND: Dimethylsulfoniopropionate (DMSP) is a small sulphur compound which is produced in prodigious amounts in the oceans and plays a pivotal role in the marine sulfur cycle. Until recently, DMSP was believed to be synthesized exclusively by photosynthetic organisms; however we now know that corals and specific bacteria can also produce this compound. Corals are major sources of DMSP, but the molecular basis for its biosynthesis is unknown in these organisms. RESULTS: Here we used salinity stress, which is known to trigger DMSP production in other organisms, in conjunction with transcriptomics to identify coral genes likely to be involved in DMSP biosynthesis. We focused specifically on both adults and juveniles of the coral Acropora millepora: after 24 h of exposure to hyposaline conditions, DMSP concentrations increased significantly by 2.6 fold in adult corals and 1.2 fold in juveniles. Concomitantly, candidate genes enabling each of the necessary steps leading to DMSP production were up-regulated. CONCLUSIONS: The data presented strongly suggest that corals use an algal-like pathway to generate DMSP from methionine, and are able to rapidly change expression of the corresponding genes in response to environmental stress. However, our data also indicate that DMSP is unlikely to function primarily as an osmolyte in corals, instead potentially serving as a scavenger of ROS and as a molecular sink for excess methionine produced as a consequence of proteolysis and osmolyte catabolism in corals under hypo-osmotic conditions.


Subject(s)
Anthozoa/genetics , Anthozoa/metabolism , Gene Expression Profiling , Osmotic Pressure , Sulfonium Compounds/metabolism , Animals , Genotyping Techniques , Methionine/metabolism , Photosystem II Protein Complex/metabolism , Salinity , Stress, Physiological/genetics
9.
ISME J ; 11(7): 1702-1712, 2017 07.
Article in English | MEDLINE | ID: mdl-28323278

ABSTRACT

Reef-building corals form symbiotic relationships with dinoflagellates of the genus Symbiodinium. Symbiodinium are genetically and physiologically diverse, and corals may be able to adapt to different environments by altering their dominant Symbiodinium phylotype. Notably, each coral species associates only with specific Symbiodinium phylotypes, and consequently the diversity of symbionts available to the host is limited by the species specificity. Currently, it is widely presumed that species specificity is determined by the combination of cell-surface molecules on the host and symbiont. Here we show experimental evidence supporting a new model to explain at least part of the specificity in coral-Symbiodinium symbiosis. Using the laboratory model Aiptasia-Symbiodinium system, we found that symbiont infectivity is related to cell size; larger Symbiodinium phylotypes are less likely to establish a symbiotic relationship with the host Aiptasia. This size dependency is further supported by experiments where symbionts were replaced by artificial fluorescent microspheres. Finally, experiments using two different coral species demonstrate that our size-dependent-infection model can be expanded to coral-Symbiodinium symbiosis, with the acceptability of large-sized Symbiodinium phylotypes differing between two coral species. Thus the selectivity of the host for symbiont cell size can affect the diversity of symbionts in corals.


Subject(s)
Anthozoa/physiology , Dinoflagellida/cytology , Symbiosis/physiology , Animals , Cell Size , Dinoflagellida/physiology , Species Specificity
10.
BMC Evol Biol ; 16: 48, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26924819

ABSTRACT

BACKGROUND: Research into various aspects of coral biology has greatly increased in recent years due to anthropogenic threats to coral health including pollution, ocean warming and acidification. However, knowledge of coral early development has lagged. The present paper describes the embryonic development of two previously uncharacterized robust corals, Favia lizardensis (a massive brain coral) and Ctenactis echinata (a solitary coral) and compares it to that of the previously characterized complex coral, Acropora millepora, both morphologically and in terms of the expression of a set of key developmental genes. RESULTS: Illumina sequencing of mixed age embryos was carried out, resulting in embryonic transcriptomes consisting of 40605 contigs for C.echinata (N50 = 1080 bp) and 48536 contigs for F.lizardensis (N50 = 1496 bp). The transcriptomes have been annotated against Swiss-Prot and were sufficiently complete to enable the identification of orthologs of many key genes controlling development in bilaterians. Developmental series of images of whole mounts and sections reveal that the early stages of both species contain a blastocoel, consistent with their membership of the robust clade. In situ hybridization was used to examine the expression of the developmentally important genes brachyury, chordin and forkhead. The expression of brachyury and forkhead was consistent with that previously reported for Acropora and allowed us to confirm that the pseudo-blastopore sometimes seen in robust corals such as Favia spp. is not directly associated with gastrulation. C.echinata chordin expression, however, differed from that seen in the other two corals. CONCLUSIONS: Embryonic transcriptomes were assembled for the brain coral Favia lizardensis and the solitary coral Ctenactis echinata. Both species have a blastocoel in their early developmental stages, consistent with their phylogenetic position as members of the robust clade. Expression of the key developmental genes brachyury, chordin and forkhead was investigated, allowing comparison to that of their orthologs in Acropora, Nematostella and bilaterians and demonstrating that even within the Anthozoa there are significant differences in expression patterns.


Subject(s)
Anthozoa/embryology , Gene Expression Regulation, Developmental , Transcriptome , Animals , Anthozoa/genetics , Anthozoa/metabolism , Fetal Proteins/metabolism , Forkhead Transcription Factors/metabolism , Genes, Developmental , Glycoproteins/metabolism , In Situ Hybridization , Intercellular Signaling Peptides and Proteins/metabolism , Phylogeny , T-Box Domain Proteins/metabolism
11.
BMC Genomics ; 17: 62, 2016 Jan 16.
Article in English | MEDLINE | ID: mdl-26772977

ABSTRACT

BACKGROUND: Apoptotic cell death is a defining and ubiquitous characteristic of metazoans, but its evolutionary origins are unclear. Although Caenorhabditis and Drosophila played key roles in establishing the molecular bases of apoptosis, it is now clear that cell death pathways of these animals do not reflect ancestral characteristics. Conversely, recent work suggests that the apoptotic networks of cnidarians may be complex and vertebrate-like, hence characterization of the apoptotic complement of representatives of the basal cnidarian class Anthozoa will help us to understand the evolution of the vertebrate apoptotic network. RESULTS: We describe the Bcl-2 and caspase protein repertoires of the coral Acropora millepora, making use of the comprehensive transcriptomic data available for this species. Molecular phylogenetics indicates that some Acropora proteins are orthologs of specific mammalian pro-apoptotic Bcl-2 family members, but the relationships of other Bcl-2 and caspases are unclear. The pro- or anti-apoptotic activities of coral Bcl-2 proteins were investigated by expression in mammalian cells, and the results imply functional conservation of the effector/anti-apoptotic machinery despite limited sequence conservation in the anti-apoptotic Bcl-2 proteins. A novel caspase type ("Caspase-X"), containing both inactive and active caspase domains, was identified in Acropora and appears to be restricted to corals. When expressed in mammalian cells, full-length caspase-X caused loss of viability, and a truncated version containing only the active domain was more effective in inducing cell death, suggesting that the inactive domain might modulate activity in the full-length protein. Structure prediction suggests that the active and inactive caspase domains in caspase-X are likely to interact, resulting in a structure resembling that of the active domain in procaspase-8 and the inactive caspase domain in the mammalian c-FLIP anti-apoptotic factor. CONCLUSIONS: The data presented here confirm that many of the basic mechanisms involved in both the intrinsic and extrinsic apoptotic pathways were in place in the common ancestor of cnidarians and bilaterians. With the identification of most or all of the repertoires of coral Bcl-2 and caspases, our results not only provide new perspectives on the evolution of apoptotic pathways, but also a framework for future experimental studies towards a complete understanding of coral bleaching mechanisms, in which apoptotic cell death might be involved.


Subject(s)
Apoptosis/genetics , Caspase 8/genetics , Evolution, Molecular , Proto-Oncogene Proteins c-bcl-2/genetics , Amino Acid Sequence/genetics , Animals , Anthozoa/genetics , Conserved Sequence/genetics , Drosophila/genetics , Phylogeny
12.
Dev Biol ; 399(2): 337-47, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25601451

ABSTRACT

Organizer activity, once thought to be restricted to vertebrates, has ancient origins. However, among non-bilaterians, it has only been subjected to detailed investigation during embryonic development of the sea anemone, Nematostella vectensis. As a step toward establishing the extent to which findings in Nematostella can be generalized across the large and diverse phylum Cnidaria, we examined the expression of some key organizer and gastrulation genes during the embryonic development of the coral Acropora millepora. Although anemones and corals both belong to the cnidarian class Anthozoa, the two lineages diverged during the Cambrian and the morphological development of Acropora differs in several important respects from that of Nematostella. While the expression patterns of the key genes brachyury, bmp2/4, chordin, goosecoid and forkhead are broadly similar, developmental differences between the two species enable novel observations, and new interpretations of their significance. Specifically, brachyury expression during the flattened prawnchip stage before gastrulation, a developmental peculiarity of Acropora, leads us to suggest that it is the key gene demarcating ectoderm from endoderm in Acropora, and by implication in other cnidarians, whereas previous studies in Nematostella proposed that forkhead plays this role. Other novel observations include the transient expression of Acropora forkhead in scattered ectodermal cells shortly after gastrulation, and in the developing mesenterial filaments, with no corresponding expression reported in Nematostella. In addition, the expression patterns of goosecoid and bmp2/4 confirm the fundamental bilaterality of the Anthozoa.


Subject(s)
Anthozoa/embryology , Biological Evolution , Fetal Proteins/metabolism , Gene Expression Regulation, Developmental/physiology , Organizers, Embryonic/metabolism , T-Box Domain Proteins/metabolism , Animals , Anthozoa/metabolism , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 4/metabolism , DNA Primers/genetics , DNA, Complementary/genetics , Ectoderm/embryology , Ectoderm/metabolism , Endoderm/embryology , Endoderm/metabolism , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Developmental/genetics , Goosecoid Protein/metabolism , Image Processing, Computer-Assisted , In Situ Hybridization , Species Specificity
13.
PLoS One ; 8(12): e84115, 2013.
Article in English | MEDLINE | ID: mdl-24367633

ABSTRACT

A comprehensive understanding of coral reproduction and development is needed because corals are threatened in many ways by human activity. Major threats include the loss of their photosynthetic symbionts (Symbiodinium) caused by rising temperatures (bleaching), reduced ability to calcify caused by ocean acidification, increased storm severity associated with global climate change and an increase in predators caused by runoff from human agricultural activity. In spite of these threats, detailed descriptions of embryonic development are not available for many coral species. The current consensus is that there are two major groups of stony corals, the "complex" and the "robust". In this paper we describe the embryonic development of four "complex" species, Pseudosiderastrea tayamai, Galaxea fascicularis, Montipora hispida, and Pavona Decussata, and seven "robust" species, Oulastrea crispata, Platygyra contorta, Favites abdita, Echinophyllia aspera, Goniastrea favulus, Dipsastraea speciosa (previously Favia speciosa), and Phymastrea valenciennesi (previously Montastrea valenciennesi). Data from both histologically sectioned embryos and whole mounts are presented. One apparent difference between these two major groups is that before gastrulation the cells of the complex corals thus far described (mainly Acropora species) spread and flatten to produce the so-called prawn chip, which lacks a blastocoel. Our present broad survey of robust and complex corals reveals that prawn chip formation is not a synapomorphy of complex corals, as Pavona Decussata does not form a prawn chip and has a well-developed blastocoel. Although prawn chip formation cannot be used to separate the two clades, none of the robust corals which we surveyed has such a stage. Many robust coral embryos pass through two periods of invagination, separated by a return to a spherical shape. However, only the second of these periods is associated with endoderm formation. We have therefore termed the first invagination a pseudo-blastopore.


Subject(s)
Anthozoa/embryology , Animals , Germ Layers/embryology , Species Specificity
14.
BMC Genomics ; 14: 400, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23768317

ABSTRACT

BACKGROUND: As a step towards understanding coral immunity we present the first whole transcriptome analysis of the acute responses of Acropora millepora to challenge with the bacterial cell wall derivative MDP and the viral mimic poly I:C, defined immunogens provoking distinct but well characterised responses in higher animals. RESULTS: These experiments reveal similarities with the responses both of arthropods and mammals, as well as coral-specific effects. The most surprising finding was that MDP specifically induced three members of the GiMAP gene family, which has been implicated in immunity in mammals but is absent from Drosophila and Caenorhabditis. Like their mammalian homologs, GiMAP genes are arranged in a tandem cluster in the coral genome. CONCLUSIONS: A phylogenomic survey of this gene family implies ancient origins, multiple independent losses and lineage-specific expansions during animal evolution. Whilst functional convergence cannot be ruled out, GiMAP expression in corals may reflect an ancestral role in immunity, perhaps in phagolysosomal processing.


Subject(s)
Anthozoa/genetics , Anthozoa/immunology , GTP Phosphohydrolases/genetics , Gene Expression Regulation, Enzymologic/immunology , Immunity, Innate/genetics , Plants/immunology , Transcription, Genetic/immunology , Acetylmuramyl-Alanyl-Isoglutamine/immunology , Amino Acid Sequence , Animals , Anthozoa/enzymology , Cell Wall/immunology , Cell Wall/metabolism , GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/metabolism , Gene Expression Profiling , Humans , Mammals/immunology , Molecular Sequence Data , Poly I-C/immunology , Protein Structure, Tertiary , Pseudomonas/cytology , Up-Regulation/immunology
15.
PLoS One ; 8(2): e56465, 2013.
Article in English | MEDLINE | ID: mdl-23418572

ABSTRACT

The mitochondrial genome maintenance gene, MGM101, is essential for yeasts that depend on mitochondrial DNA replication. Previously, in Saccharomyces cerevisiae, it has been found that the carboxy-terminal two-thirds of Mgm101p has a functional core. Furthermore, there is a high level of amino acid sequence conservation in this region from widely diverse species. By contrast, the amino-terminal region, that is also essential for function, does not have recognizable conservation. Using a bioinformatic approach we find that the functional core from yeast and a corresponding region of Mgm101p from the coral Acropora millepora have an ordered structure, while the N-terminal domains of sequences from yeast and coral are predicted to be disordered. To examine whether ordered and disordered domains of Mgm101p have specific or general functions we made chimeric proteins from yeast and coral by swapping the two regions. We find, by an in vivo assay in S.cerevisiae, that the ordered domain of A.millepora can functionally replace the yeast core region but the disordered domain of the coral protein cannot substitute for its yeast counterpart. Mgm101p is found in the mitochondrial nucleoid along with enzymes and proteins involved in mtDNA replication. By attaching green fluorescent protein to the N-terminal disordered domain of yeast Mgm101p we find that GFP is still directed to the mitochondrial nucleoid where full-length Mgm101p-GFP is targeted.


Subject(s)
GTP-Binding Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Animals , Anthozoa/genetics , Binding Sites/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/genetics , Genetic Complementation Test , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Microscopy, Fluorescence , Mitochondria/genetics , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Molecular Sequence Data , Mutation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Sequence Homology, Amino Acid
16.
Mol Biol Evol ; 29(10): 3095-109, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22496439

ABSTRACT

Secreted peptides, produced by enzymatic processing of larger precursor molecules, are found throughout the animal kingdom and play important regulatory roles as neurotransmitters and hormones. Many require a carboxy-terminal modification, involving the conversion of a glycine residue into an α-amide, for their biological activity. Two sequential enzymatic activities catalyze this conversion: a monooxygenase (peptidylglycine α-hydroxylating monooxygenase or PHM) and an amidating lyase (peptidyl-α-hydroxyglycine α-amidating lyase or PAL). In vertebrates, these activities reside in a single polypeptide known as peptidylglycine α-amidating monooxygenase (PAM), which has been extensively studied in the context of neuropeptide modification. Bifunctional PAMs have been reported from some invertebrates, but the phylogenetic distribution of PAMs and their evolutionary relationship to PALs and PHMs is unclear. Here, we report sequence and expression data for two PAMs from the coral Acropora millepora (Anthozoa, Cnidaria), as well as providing a comprehensive survey of the available sequence data from other organisms. These analyses indicate that bifunctional PAMs predate the origins of the nervous and endocrine systems, consistent with the idea that within the Metazoa their ancestral function may have been to amidate epitheliopeptides. More surprisingly, the phylogenomic survey also revealed the presence of PAMs in green algae (but not in higher plants or fungi), implying that the bifunctional enzyme either predates the plant/animal divergence and has subsequently been lost in a number of lineages or perhaps that convergent evolution or lateral gene transfer has occurred. This finding is consistent with recent discoveries that other molecules once thought of as "neural" predate nervous systems.


Subject(s)
Anthozoa/enzymology , Chlorophyta/enzymology , Mixed Function Oxygenases/genetics , Multienzyme Complexes/genetics , Neurons/enzymology , Alternative Splicing/genetics , Amidine-Lyases/chemistry , Amidine-Lyases/metabolism , Amino Acid Sequence , Animals , Anthozoa/genetics , Biocatalysis , Evolution, Molecular , Gene Expression Regulation, Enzymologic , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/metabolism , Molecular Sequence Data , Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , Phylogeny , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Time Factors
17.
PLoS One ; 6(10): e26411, 2011.
Article in English | MEDLINE | ID: mdl-22065994

ABSTRACT

BACKGROUND: A successful metamorphosis from a planktonic larva to a settled polyp, which under favorable conditions will establish a future colony, is critical for the survival of corals. However, in contrast to the situation in other animals, e.g., frogs and insects, little is known about the molecular basis of coral metamorphosis. We have begun to redress this situation with previous microarray studies, but there is still a great deal to learn. In the present paper we have utilized a different technology, subtractive hybridization, to characterize genes differentially expressed across this developmental transition and to compare the success of this method to microarray. METHODOLOGY/PRINCIPAL FINDINGS: Suppressive subtractive hybridization (SSH) was used to identify two pools of transcripts from the coral, Acropora millepora. One is enriched for transcripts expressed at higher levels at the pre-settlement stage, and the other for transcripts expressed at higher levels at the post-settlement stage. Virtual northern blots were used to demonstrate the efficacy of the subtractive hybridization technique. Both pools contain transcripts coding for proteins in various functional classes but transcriptional regulatory proteins were represented more frequently in the post-settlement pool. Approximately 18% of the transcripts showed no significant similarity to any other sequence on the public databases. Transcripts of particular interest were further characterized by in situ hybridization, which showed that many are regulated spatially as well as temporally. Notably, many transcripts exhibit axially restricted expression patterns that correlate with the pool from which they were isolated. Several transcripts are expressed in patterns consistent with a role in calcification. CONCLUSIONS: We have characterized over 200 transcripts that are differentially expressed between the planula larva and post-settlement polyp of the coral, Acropora millepora. Sequence, putative function, and in some cases temporal and spatial expression are reported.


Subject(s)
Anthozoa/growth & development , Anthozoa/genetics , Gene Expression Profiling , Metamorphosis, Biological/genetics , Animals , Blotting, Northern , Gene Expression Regulation, Developmental , In Situ Hybridization , Life Cycle Stages/genetics , Molecular Sequence Annotation , Molecular Sequence Data , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time Factors
18.
Mol Biol Evol ; 28(1): 153-61, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20660083

ABSTRACT

Members of the universal stress protein (USP) family were originally identified in stressed bacteria on the basis of a shared domain, which has since been reported in a phylogenetically diverse range of prokaryotes, fungi, protists, and plants. Although not previously characterized in metazoans, here we report that USP genes are distributed in animal genomes in a unique pattern that reflects frequent independent losses and independent expansions. Multiple USP loci are present in urochordates as well as all Cnidaria and Lophotrochozoa examined, but none were detected in any of the available ecdysozoan or non-urochordate deuterostome genome data. The vast majority of the metazoan USPs are short, single-domain proteins and are phylogenetically distinct from the prokaryotic, plant, protist, and fungal members of the protein family. Whereas most of the metazoan USP genes contain introns, with few exceptions those in the cnidarian Hydra are intronless and cluster together in phylogenetic analyses. Expression patterns were determined for several cnidarian USPs, including two genes belonging to the intronless clade, and these imply diverse functions. The apparent paradox of implied diversity of roles despite high overall levels of sequence (and implied structural) similarity parallels the situation in bacteria. The absence of USP genes in ecdysozoans and most deuterostomes may be a consequence of functional redundancy or specialization in taxon-specific roles.


Subject(s)
Genomics/methods , Heat-Shock Proteins/genetics , Phylogeny , Amino Acid Sequence , Animals , Bayes Theorem , Gene Expression , Heat-Shock Proteins/classification , Humans , Hydra/anatomy & histology , Hydra/classification , Hydra/genetics , In Situ Hybridization , Molecular Sequence Data , Sequence Alignment
19.
Trends Genet ; 26(4): 154-8, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20129693

ABSTRACT

Recent thought on genome evolution has focused on the creation of new genes and changes in regulatory mechanisms while ignoring the role of selective gene loss in shaping genomes. Using data from two cnidarians, the jellyfish Clytia and the coral Acropora, we examined the relative significance of new 'taxonomically restricted' genes and selectively retained ancestral genes in enabling the evolution of novel traits. Consistent with its more complex life-cycle, the proportion of novel genes identified in Clytia was higher than that in the 'polyp only' cnidarians Nematostella and Hydra, but each of these cnidarians has retained a proportion of ancestral genes not present in the other two. The ubiquity and near-stochastic nature of gene loss can explain the discord between patterns of gene distribution and taxonomy.


Subject(s)
Cnidaria/genetics , Evolution, Molecular , Animals , Anthozoa/genetics , Anthozoa/physiology , Cnidaria/physiology , Hydrozoa/genetics , Hydrozoa/physiology , Scyphozoa/genetics , Scyphozoa/physiology
20.
BMC Evol Biol ; 9: 178, 2009 Jul 29.
Article in English | MEDLINE | ID: mdl-19638240

ABSTRACT

BACKGROUND: The coral skeleton consists of CaCO3 deposited upon an organic matrix primarily as aragonite. Currently galaxin, from Galaxea fascicularis, is the only soluble protein component of the organic matrix that has been characterized from a coral. Three genes related to galaxin were identified in the coral Acropora millepora. RESULTS: One of the Acropora genes (Amgalaxin) encodes a clear galaxin ortholog, while the others (Amgalaxin-like 1 and Amgalaxin-like 2) encode larger and more divergent proteins. All three proteins are predicted to be extracellular and share common structural features, most notably the presence of repetitive motifs containing dicysteine residues. In situ hybridization reveals distinct, but partially overlapping, spatial expression of the genes in patterns consistent with distinct roles in calcification. Both of the Amgalaxin-like genes are expressed exclusively in the early stages of calcification, while Amgalaxin continues to be expressed in the adult, consistent with the situation in the coral Galaxea. CONCLUSION: Comparisons with molluscs suggest functional convergence in the two groups; lustrin A/pearlin proteins may be the mollusc counterparts of galaxin, whereas the galaxin-like proteins combine characteristics of two distinct proteins involved in mollusc calcification. Database searches indicate that, although sequences with high similarity to the galaxins are restricted to the Scleractinia, more divergent members of this protein family are present in other cnidarians and some other metazoans. We suggest that ancestral galaxins may have been secondarily recruited to roles in calcification in the Triassic, when the Scleractinia first appeared. Understanding the evolution of the broader galaxin family will require wider sampling and expression analysis in a range of cnidarians and other animals.


Subject(s)
Anthozoa/genetics , Calcification, Physiologic/genetics , Metamorphosis, Biological/genetics , Amino Acid Sequence , Animals , Anthozoa/metabolism , Expressed Sequence Tags , Gene Expression Profiling , Gene Expression Regulation, Developmental , Molecular Sequence Data , Proteins/genetics , Proteins/metabolism , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...