Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Open Biol ; 14(6): 230463, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835243

ABSTRACT

Succinate dehydrogenase (SDH) is a protein complex that functions in the tricarboxylic acid cycle and the electron transport chain of mitochondria. In most eukaryotes, SDH is highly conserved and comprises the following four subunits: SdhA and SdhB form the catalytic core of the complex, while SdhC and SdhD anchor the complex in the membrane. Toxoplasma gondii is an apicomplexan parasite that infects one-third of humans worldwide. The genome of T. gondii encodes homologues of the catalytic subunits SdhA and SdhB, although the physiological role of the SDH complex in the parasite and the identity of the membrane-anchoring subunits are poorly understood. Here, we show that the SDH complex contributes to optimal proliferation and O2 consumption in the disease-causing tachyzoite stage of the T. gondii life cycle. We characterize a small membrane-bound subunit of the SDH complex called mitochondrial protein ookinete developmental defect (MPODD), which is conserved among myzozoans, a phylogenetic grouping that incorporates apicomplexan parasites and their closest free-living relatives. We demonstrate that TgMPODD is essential for SDH activity and plays a key role in attaching the TgSdhA and TgSdhB proteins to the membrane anchor of the complex. Our findings highlight a unique and important feature of mitochondrial energy metabolism in apicomplexan parasites and their relatives.


Subject(s)
Protozoan Proteins , Succinate Dehydrogenase , Toxoplasma , Toxoplasma/metabolism , Toxoplasma/genetics , Toxoplasma/enzymology , Succinate Dehydrogenase/metabolism , Succinate Dehydrogenase/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/chemistry , Humans , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondria/metabolism , Phylogeny , Animals
3.
PLoS Pathog ; 19(7): e1011517, 2023 07.
Article in English | MEDLINE | ID: mdl-37471441

ABSTRACT

Apicomplexans are widespread parasites of humans and other animals, and include the causative agents of malaria (Plasmodium species) and toxoplasmosis (Toxoplasma gondii). Existing anti-apicomplexan therapies are beset with issues around drug resistance and toxicity, and new treatment options are needed. The mitochondrial electron transport chain (ETC) is one of the few processes that has been validated as a drug target in apicomplexans. To identify new inhibitors of the apicomplexan ETC, we developed a Seahorse XFe96 flux analyzer approach to screen the 400 compounds contained within the Medicines for Malaria Venture 'Pathogen Box' for ETC inhibition. We identified six chemically diverse, on-target inhibitors of the ETC in T. gondii, at least four of which also target the ETC of Plasmodium falciparum. Two of the identified compounds (MMV024937 and MMV688853) represent novel ETC inhibitor chemotypes. MMV688853 belongs to a compound class, the aminopyrazole carboxamides, that were shown previously to target a kinase with a key role in parasite invasion of host cells. Our data therefore reveal that MMV688853 has dual targets in apicomplexans. We further developed our approach to pinpoint the molecular targets of these inhibitors, demonstrating that all target Complex III of the ETC, with MMV688853 targeting the ubiquinone reduction (Qi) site of the complex. Most of the compounds we identified remain effective inhibitors of parasites that are resistant to Complex III inhibitors that are in clinical use or development, indicating that they could be used in treating drug resistant parasites. In sum, we have developed a versatile, scalable approach to screen for compounds that target the ETC in apicomplexan parasites, and used this to identify and characterize novel inhibitors.


Subject(s)
Parasites , Toxoplasma , Toxoplasmosis , Animals , Humans , Electron Transport , Electron Transport Complex III , Toxoplasmosis/parasitology , Plasmodium falciparum
4.
PLoS Pathog ; 19(6): e1011430, 2023 06.
Article in English | MEDLINE | ID: mdl-37262100

ABSTRACT

The mitochondrial electron transport chain (ETC) of apicomplexan parasites differs considerably from the ETC of the animals that these parasites infect, and is the target of numerous anti-parasitic drugs. The cytochrome c oxidase complex (Complex IV) of the apicomplexan Toxoplasma gondii ETC is more than twice the mass and contains subunits not found in human Complex IV, including a 13 kDa protein termed TgApiCox13. TgApiCox13 is homologous to a human iron-sulfur (Fe-S) cluster-containing protein called the mitochondrial inner NEET protein (HsMiNT) which is not a component of Complex IV in humans. Here, we establish that TgApiCox13 is a critical component of Complex IV in T. gondii, required for complex activity and stability. Furthermore, we demonstrate that TgApiCox13, like its human homolog, binds two Fe-S clusters. We show that the Fe-S clusters of TgApiCox13 are critical for ETC function, having an essential role in mediating Complex IV integrity. Our study provides the first functional characterisation of an Fe-S protein in Complex IV.


Subject(s)
Parasites , Toxoplasma , Animals , Humans , Toxoplasma/metabolism , Parasites/metabolism , Electron Transport Complex IV/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
5.
Trends Parasitol ; 38(12): 1041-1052, 2022 12.
Article in English | MEDLINE | ID: mdl-36302692

ABSTRACT

The mitochondrial respiratory chain is an essential pathway in most studied eukaryotes due to its roles in respiration and other pathways that depend on mitochondrial membrane potential. Apicomplexans are unicellular eukaryotes whose members have an impact on global health. The respiratory chain is a drug target for some members of this group, notably the malaria-causing Plasmodium spp. This has motivated studies of the respiratory chain in apicomplexan parasites, primarily Toxoplasma gondii and Plasmodium spp. for which experimental tools are most advanced. Studies of the respiratory complexes in these organisms revealed numerous novel features, including expansion of complex size. The divergence of apicomplexan mitochondria from commonly studied models highlights the diversity of mitochondrial form and function across eukaryotic life.


Subject(s)
Apicomplexa , Malaria , Plasmodium , Toxoplasma , Humans , Electron Transport , Mitochondria/metabolism , Plasmodium/metabolism , Malaria/parasitology , Apicomplexa/metabolism
6.
Bio Protoc ; 12(1): e4288, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35118179

ABSTRACT

The mitochondrial electron transport chain (ETC) performs several critical biological functions, including maintaining mitochondrial membrane potential, serving as an electron sink for important metabolic pathways, and contributing to the generation of ATP via oxidative phosphorylation. The ETC is important for the survival of many eukaryotic organisms, including intracellular parasites such as the apicomplexan Toxoplasma gondii. The ETC of T. gondii and related parasites differs in several ways from the ETC of the mammalian host cells they infect, and can be targeted by anti-parasitic drugs, including the clinically used compound atovaquone. To characterize the function of novel ETC proteins found in the parasite and to identify new ETC inhibitors, a scalable assay that assesses both ETC function and non-mitochondrial parasite metabolism (e.g., glycolysis) is desirable. Here, we describe methods to measure the oxygen consumption rate (OCR) of intact T. gondii parasites and thereby assess ETC function, while simultaneously measuring the extracellular acidification rate (ECAR) as a measure of general parasite metabolism, using a Seahorse XFe96 extracellular flux analyzer. We also describe a method to pinpoint the location of ETC defects and/or the targets of inhibitors, using permeabilized T. gondii parasites. We have successfully used these methods to investigate the function of T. gondii proteins, including the apicomplexan parasite-specific protein subunit TgQCR11 of the coenzyme Q:cytochrome c oxidoreductase complex (ETC Complex III). We note that these methods are also amenable to screening compound libraries to identify candidate ETC inhibitors.

7.
PLoS Pathog ; 17(2): e1009211, 2021 02.
Article in English | MEDLINE | ID: mdl-33524071

ABSTRACT

The mitochondrion is critical for the survival of apicomplexan parasites. Several major anti-parasitic drugs, such as atovaquone and endochin-like quinolones, act through inhibition of the mitochondrial electron transport chain at the coenzyme Q:cytochrome c oxidoreductase complex (Complex III). Despite being an important drug target, the protein composition of Complex III of apicomplexan parasites has not been elucidated. Here, we undertake a mass spectrometry-based proteomic analysis of Complex III in the apicomplexan Toxoplasma gondii. Along with canonical subunits that are conserved across eukaryotic evolution, we identify several novel or highly divergent Complex III components that are conserved within the apicomplexan lineage. We demonstrate that one such subunit, which we term TgQCR11, is critical for parasite proliferation, mitochondrial oxygen consumption and Complex III activity, and establish that loss of this protein leads to defects in Complex III integrity. We conclude that the protein composition of Complex III in apicomplexans differs from that of the mammalian hosts that these parasites infect.


Subject(s)
Electron Transport Complex III/metabolism , Toxoplasma/metabolism , Animals , Blotting, Western , Cells, Cultured , Electron Transport Complex III/chemistry , Fluorescent Antibody Technique , Humans , Mitochondria/metabolism , Oxygen/metabolism , Protein Subunits/chemistry , Protein Subunits/metabolism , Smegmamorpha , Toxoplasma/genetics
8.
Int J Parasitol ; 51(2-3): 95-121, 2021 02.
Article in English | MEDLINE | ID: mdl-33347832

ABSTRACT

Toxoplasmosis is caused by Toxoplasma gondii, an apicomplexan parasite that is able to infect any nucleated cell in any warm-blooded animal. Toxoplasma gondii infects around 2 billion people and, whilst only a small percentage of infected people will suffer serious disease, the prevalence of the parasite makes it one of the most damaging zoonotic diseases in the world. Toxoplasmosis is a disease with multiple manifestations: it can cause a fatal encephalitis in immunosuppressed people; if first contracted during pregnancy, it can cause miscarriage or congenital defects in the neonate; and it can cause serious ocular disease, even in immunocompetent people. The disease has a complex epidemiology, being transmitted by ingestion of oocysts that are shed in the faeces of definitive feline hosts and contaminate water, soil and crops, or by consumption of intracellular cysts in undercooked meat from intermediate hosts. In this review we examine current and future approaches to control toxoplasmosis, which encompass a variety of measures that target different components of the life cycle of T. gondii. These include: education programs about the parasite and avoidance of contact with infectious stages; biosecurity and sanitation to ensure food and water safety; chemo- and immunotherapeutics to control active infections and disease; prophylactic options to prevent acquisition of infection by livestock and cyst formation in meat; and vaccines to prevent shedding of oocysts by definitive feline hosts.


Subject(s)
Toxoplasma , Toxoplasmosis, Animal , Toxoplasmosis , Animals , Cats , Female , Humans , Oocysts , Pregnancy , Prevalence , Toxoplasmosis/prevention & control , Toxoplasmosis, Animal/prevention & control , Zoonoses
9.
Mol Microbiol ; 115(5): 968-985, 2021 05.
Article in English | MEDLINE | ID: mdl-33222310

ABSTRACT

Iron-sulfur (Fe-S) clusters are prosthetic groups on proteins that function in a range of enzymatic and electron transfer reactions. Fe-S cluster synthesis is essential for the survival of all eukaryotes. Independent Fe-S cluster biosynthesis pathways occur in the mitochondrion, plastid, and cytosolic compartments of eukaryotic cells. Little is known about the cytosolic Fe-S cluster biosynthesis in apicomplexan parasites, the causative agents of diseases such as malaria and toxoplasmosis. NBP35 serves as a key scaffold protein on which cytosolic Fe-S clusters assemble, and has a cytosolic localization in most eukaryotes studied thus far. Unexpectedly, we found that the NBP35 homolog of the apicomplexan Toxoplasma gondii (TgNBP35) localizes to the outer mitochondrial membrane, with mitochondrial targeting mediated by an N-terminal transmembrane domain. We demonstrate that TgNBP35 is critical for parasite proliferation, but that, despite its mitochondrial localization, it is not required for Fe-S cluster synthesis in the mitochondrion. Instead, we establish that TgNBP35 is important for the biogenesis of cytosolic Fe-S proteins. Our data are consistent with TgNBP35 playing a central and specific role in cytosolic Fe-S cluster biosynthesis, and imply that the assembly of cytosolic Fe-S clusters occurs on the cytosolic face of the outer mitochondrial membrane in these parasites.


Subject(s)
Cytosol/metabolism , Iron-Sulfur Proteins/metabolism , Mitochondria/metabolism , Protozoan Proteins/metabolism , Toxoplasma/metabolism , Toxoplasmosis/parasitology , Humans , Iron-Sulfur Proteins/genetics , Mitochondria/genetics , Protein Transport , Protozoan Proteins/genetics , Toxoplasma/genetics
10.
Nat Commun ; 11(1): 760, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32029733

ABSTRACT

Inflammasomes are important for host defence against pathogens and homeostasis with commensal microbes. Here, we show non-haemolytic enterotoxin (NHE) from the neglected human foodborne pathogen Bacillus cereus is an activator of the NLRP3 inflammasome and pyroptosis. NHE is a non-redundant toxin to haemolysin BL (HBL) despite having a similar mechanism of action. Via a putative transmembrane region, subunit C of NHE initiates binding to the plasma membrane, leading to the recruitment of subunit B and subunit A, thus forming a tripartite lytic pore that is permissive to efflux of potassium. NHE mediates killing of cells from multiple lineages and hosts, highlighting a versatile functional repertoire in different host species. These data indicate that NHE and HBL operate synergistically to induce inflammation and show that multiple virulence factors from the same pathogen with conserved function and mechanism of action can be exploited for sensing by a single inflammasome.


Subject(s)
Bacillus cereus/pathogenicity , Enterotoxins/toxicity , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Bacterial Proteins/toxicity , Cell Line , Enterotoxins/chemistry , Female , Hemolysin Proteins/toxicity , Host Microbial Interactions , Host Specificity , Humans , Inflammasomes/drug effects , Inflammasomes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pyroptosis/drug effects , Virulence Factors/toxicity
11.
J Biol Chem ; 295(6): 1539-1550, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31914409

ABSTRACT

Apicomplexan parasites such as Toxoplasma gondii possess an unusual heme biosynthesis pathway whose enzymes localize to the mitochondrion, cytosol, or apicoplast, a nonphotosynthetic plastid present in most apicomplexans. To characterize the involvement of the apicoplast in the T. gondii heme biosynthesis pathway, we investigated the role of the apicoplast-localized enzyme uroporphyrinogen III decarboxylase (TgUroD). We found that TgUroD knockdown impaired parasite proliferation, decreased free heme levels in the parasite, and decreased the abundance of heme-containing c-type cytochrome proteins in the parasite mitochondrion. We validated the effects of heme loss on mitochondrial cytochromes by knocking down cytochrome c/c1 heme lyase 1 (TgCCHL1), a mitochondrial enzyme that catalyzes the covalent attachment of heme to c-type cytochromes. TgCCHL1 depletion reduced parasite proliferation and decreased the abundance of c-type cytochromes. We further sought to characterize the overall importance of TgUroD and TgCCHL1 for both mitochondrial and general parasite metabolism. TgUroD depletion decreased cellular ATP levels, mitochondrial oxygen consumption, and extracellular acidification rates. By contrast, depletion of TgCCHL1 neither diminished ATP levels in the parasite nor impaired extracellular acidification rate, but resulted in specific defects in mitochondrial oxygen consumption. Together, our results indicate that the apicoplast has a key role in heme biology in T. gondii and is important for both mitochondrial and general parasite metabolism. Our study highlights the importance of heme and its synthesis in these parasites.


Subject(s)
Apicoplasts/metabolism , Heme/metabolism , Protozoan Proteins/metabolism , Toxoplasma/metabolism , Uroporphyrinogen Decarboxylase/metabolism , Biosynthetic Pathways , Heme/analysis , Humans , Mitochondria/metabolism , Protozoan Proteins/analysis , Toxoplasma/enzymology , Toxoplasmosis/parasitology , Uroporphyrinogen Decarboxylase/analysis
12.
Mol Biochem Parasitol ; 232: 111204, 2019 09.
Article in English | MEDLINE | ID: mdl-31381948

ABSTRACT

Mitochondrial respiration is a critical process for the survival of many eukaryotes, including parasites in the phylum Apicomplexa. These intracellular parasites include the causative agents of numerous serious diseases in humans and animals, including toxoplasmosis (Toxoplasma gondii) and malaria (Plasmodium species). Emerging evidence indicates that the mitochondrial respiratory chain of apicomplexans has notable differences to that of the host cells they infect. These differences make the respiratory chain a prominent drug target in apicomplexans, with numerous inhibitors of this pathway in current use or development. This review highlights unique aspects of the respiratory chain of apicomplexans and provides perspective on emerging points of inquiry into this essential and therapeutically exploitable pathway.


Subject(s)
Apicomplexa/metabolism , Mitochondria/metabolism , Animals , Antipruritics/pharmacology , Apicomplexa/drug effects , Apicomplexa/genetics , Electron Transport/drug effects , Humans , Protozoan Infections/drug therapy , Protozoan Infections/parasitology
13.
Nat Microbiol ; 4(2): 362-374, 2019 02.
Article in English | MEDLINE | ID: mdl-30531979

ABSTRACT

Host recognition of microbial components is essential in mediating an effective immune response. Cytosolic bacteria must secure entry into the host cytoplasm to facilitate replication and, in doing so, liberate microbial ligands that activate cytosolic innate immune sensors and the inflammasome. Here, we identified a multicomponent enterotoxin, haemolysin BL (HBL), that engages activation of the inflammasome. This toxin is highly conserved among the human pathogen Bacillus cereus. The three subunits of HBL bind to the cell membrane in a linear order, forming a lytic pore and inducing activation of the NLRP3 inflammasome, secretion of interleukin-1ß and interleukin-18, and pyroptosis. Mechanistically, the HBL-induced pore results in the efflux of potassium and triggers the activation of the NLRP3 inflammasome. Furthermore, HBL-producing B. cereus induces rapid inflammasome-mediated mortality. Pharmacological inhibition of the NLRP3 inflammasome using MCC950 prevents B. cereus-induced lethality. Overall, our results reveal that cytosolic sensing of a toxin is central to the innate immune recognition of infection. Therapeutic modulation of this pathway enhances host protection against deadly bacterial infections.


Subject(s)
Bacillus cereus/immunology , Bacterial Proteins/immunology , Enterotoxins/immunology , Hemolysin Proteins/immunology , Inflammasomes/metabolism , Inflammation , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Bacterial Proteins/metabolism , Cell Membrane/metabolism , Cell Membrane/pathology , Cells, Cultured , Culture Media, Conditioned , Enterotoxins/chemistry , Enterotoxins/metabolism , Female , Hemolysin Proteins/metabolism , Immunity, Innate , Macrophages/immunology , Macrophages/pathology , Macrophages/ultrastructure , Male , Mice , Mice, Mutant Strains , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Potassium/metabolism , Protein Multimerization , Pyroptosis , Survival Analysis
14.
Microbiol Mol Biol Rev ; 82(4)2018 12.
Article in English | MEDLINE | ID: mdl-30209070

ABSTRACT

Infection is a dynamic biological process underpinned by a complex interplay between the pathogen and the host. Microbes from all domains of life, including bacteria, viruses, fungi, and protozoan parasites, have the capacity to cause infection. Infection is sensed by the host, which often leads to activation of the inflammasome, a cytosolic macromolecular signaling platform that mediates the release of the proinflammatory cytokines interleukin-1ß (IL-1ß) and IL-18 and cleavage of the pore-forming protein gasdermin D, leading to pyroptosis. Host-mediated sensing of the infection occurs when pathogens inject or carry pathogen-associated molecular patterns (PAMPs) into the cytoplasm or induce damage that causes cytosolic liberation of danger-associated molecular patterns (DAMPs) in the host cell. Recognition of PAMPs and DAMPs by inflammasome sensors, including NLRP1, NLRP3, NLRC4, NAIP, AIM2, and Pyrin, initiates a cascade of events that culminate in inflammation and cell death. However, pathogens can deploy virulence factors capable of minimizing or evading host detection. This review presents a comprehensive overview of the mechanisms of microbe-induced activation of the inflammasome and the functional consequences of inflammasome activation in infectious diseases. We also explore the microbial strategies used in the evasion of inflammasome sensing at the host-microbe interaction interface.


Subject(s)
Apicomplexa/immunology , Bacteria/immunology , Cytosol/immunology , Fungi/immunology , Host-Pathogen Interactions/immunology , Inflammasomes/immunology , Viruses/immunology , Animals , Humans , Immunity, Innate , Inflammation/immunology , Pyroptosis
15.
J Leukoc Biol ; 103(2): 233-257, 2018 02.
Article in English | MEDLINE | ID: mdl-28855232

ABSTRACT

The inflammasome is a macromolecular protein complex that mediates proteolytic cleavage of pro-IL-1ß and -IL-18 and induces cell death in the form of pyroptosis. Certain nucleotide-binding oligomerization domain-like receptors (NLRs), absent in melanoma 2 (AIM2)-like receptors (ALRs), or tripartite motif (TRIM) family receptors trigger the assembly of an inflammasome in response to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs). Recent studies have revealed a multitude of host components and signals that are essential for controlling canonical and noncanonical inflammasome activation and pyroptosis. These include pore-forming gasdermin proteins, the never in mitosis A-related kinase 7 (NEK7), IFN-inducible proteins (IFIs), reactive oxygen species (ROS), autophagy, potassium efflux, mitochondrial perturbations, and microbial metabolites. Here, we provide a comprehensive overview of the molecular and signaling mechanisms that provide stringent regulation over the activation and effector functions of the inflammasome.


Subject(s)
Inflammasomes/metabolism , Inflammation/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Caspases/metabolism , DNA-Binding Proteins/metabolism , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Neoplasm Proteins/metabolism , Pyrin/metabolism
16.
Int J Mol Sci ; 18(2)2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28178200

ABSTRACT

The interactions of chemokines with their G protein-coupled receptors promote the migration of leukocytes during normal immune function and as a key aspect of the inflammatory response to tissue injury or infection. This review summarizes the major cellular and biochemical mechanisms by which the interactions of chemokines with chemokine receptors are regulated, including: selective and competitive binding interactions; genetic polymorphisms; mRNA splice variation; variation of expression, degradation and localization; down-regulation by atypical (decoy) receptors; interactions with cell-surface glycosaminoglycans; post-translational modifications; oligomerization; alternative signaling responses; and binding to natural or pharmacological inhibitors.


Subject(s)
Chemokines/metabolism , Receptors, Chemokine/metabolism , Signal Transduction , Animals , Binding, Competitive , Chemokines/chemistry , Chemokines/genetics , Gene Expression Regulation , Glycosaminoglycans/metabolism , Humans , Ligands , Models, Molecular , Multigene Family , Polymorphism, Genetic , Protein Binding , Protein Conformation , Protein Multimerization , Protein Processing, Post-Translational , Protein Transport , Proteolysis , RNA Splicing , Receptors, Chemokine/antagonists & inhibitors , Receptors, Chemokine/chemistry , Receptors, Chemokine/genetics , Signal Transduction/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...