Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(4): e0299551, 2024.
Article in English | MEDLINE | ID: mdl-38630753

ABSTRACT

Extreme global warming and environmental changes associated with the Toarcian (Lower Jurassic) Oceanic Anoxic Event (T-OAE, ~183 Mya) profoundly impacted marine organisms and terrestrial plants. Despite the exceptionally elevated abundances of fossil insects from strata of this age, only assemblages from Germany and Luxembourg have been studied in detail. Here, we focus on the insect assemblage found in strata recording the T-OAE at Alderton Hill, Gloucestershire, UK, where <15% of specimens have previously been described. We located all known fossil insects (n = 370) from Alderton Hill, and used these to create the first comprehensive taxonomic and taphonomic analysis of the entire assemblage. We show that a diverse palaeoentomofaunal assemblage is preserved, comprising 12 orders, 21 families, 23 genera and 21 species. Fossil disarticulation is consistent with insect decay studies. The number of orders is comparable with present-day assemblages from similar latitudes (30°-40°N), including the Azores, and suggests that the palaeoentomofauna reflects a life assemblage. At Alderton, Hemiptera, Coleoptera and Orthoptera are the commonest (56.1%) orders. The high abundance of Hemiptera (22.1%) and Orthoptera (13.4%) indicates well-vegetated islands, while floral changes related to the T-OAE may be responsible for hemipteran diversification. Predatory insects are relatively abundant (~10% of the total assemblage) and we hypothesise that the co-occurrence of fish and insects within the T-OAE represents a jubilee-like event. The marginally higher proportion of sclerotised taxa compared to present-day insect assemblages possibly indicates adaptation to environmental conditions or taphonomic bias. The coeval palaeoentomofauna from Strawberry Bank, Somerset is less diverse (9 orders, 12 families, 6 genera, 3 species) and is taphonomically biased. The Alderton Hill palaeoentomofauna is interpreted to be the best-preserved and most representative insect assemblage from Toarcian strata in the UK. This study provides an essential first step towards understanding the likely influence of the T-OAE on insects.


Subject(s)
Fossils , Hypoxia , Humans , Animals , Oceans and Seas , Insecta , United Kingdom
3.
Insects ; 12(6)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34206033

ABSTRACT

The impact of elevated CO2 (eCO2) on plant-pollinator interactions is poorly understood. This study provides the first systematic review of this topic and identifies important knowledge gaps. In addition, we present field data assessing the impact of eCO2 (150 ppm above ambient) on bluebell (Hyacinthoides non-scripta)-pollinator interactions within a mature, deciduous woodland system. Since 1956, only 71 primary papers have investigated eCO2 effects on flowering time, floral traits and pollination, with a mere 3 studies measuring the impact on pollination interactions. Our field experiment documented flowering phenology, flower visitation and seed production, as well as the abundance and phenology of dominant insect pollinators. We show that first and mid-point flowering occurred 6 days earlier under eCO2, but with no change in flowering duration. Syrphid flies and bumble bees were the dominant flower visitors, with peak activity recorded during mid- and late-flowering periods. Whilst no significant difference was recorded in total visitation or seed set between eCO2 and ambient treatments, there were clear patterns of earlier flowering under eCO2 accompanied by lower pollinator activity during this period. This has implications for potential loss of synchrony in pollination systems under future climate scenarios, with associated long-term impacts on abundance and diversity.

4.
Insects ; 11(7)2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32674412

ABSTRACT

The habitat of the intertidal flightless midge Telmatogeton magellanicus (Jacobs, 1900) is described for the first time from the northern coast of Navarino Island, Tierra del Fuego, Chile. Additionally, we report the first observations of adult behaviour in the wild. We delineate the species' distribution across three tidal zones (high, mid and low), and identify substrate characteristics that favour the presence of the midge. The mid-tide zone was the key habitat utilized by T. magellanicus, with lower densities in the low-tide zone and no presence in the high-tide zone. There was a strong association between the presence of larvae and filamentous algae, especially Bostrychia spp. and, to a lesser extent, Ulva spp., as well as between larvae and the presence of larger, more stable boulders. As a result, the species' overall distribution was widespread but patchy. We suggest that the main limiting factor is the relative humidity experienced in different habitats. One of the most striking features of the behavioural observations during data collection was the extremely active adults, which suggests high energy expenditure over a very short period of time. This may be due to the limited time available to find mates in a single low-tide period, when adults have about three hours after emerging from the pupa to complete mating and oviposition before inundation by the tide. The data presented here provide a baseline for future studies on this species' ecology, phenology, physiology and general biology.

5.
Insects ; 11(3)2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32111052

ABSTRACT

An insect's ability to tolerate winter conditions is a critical determinant of its success. This is true for both native and invasive species, and especially so in harsh polar environments. The midge Eretmoptera murphyi (Diptera, Chironomidae) is invasive to maritime Antarctic Signy Island, and the ability of fourth instar larvae to tolerate freezing is hypothesized to allow the species to extend its range further south. However, no detailed assessment of stress tolerance in any other life stage has yet been conducted. Here, we report that, although larvae, pupae and adults all have supercooling points (SCPs) of around -5 °C, only the larvae are freeze-tolerant, and that cold-hardiness increases with larval maturity. Eggs are freeze-avoiding and have an SCP of around -17 °C. At -3.34 °C, the CTmin activity thresholds of adults are close to their SCP of -5 °C, and they are likely chill-susceptible. Larvae could not withstand the anoxic conditions of ice entrapment or submergence in water beyond 28 d. The data obtained here indicate that the cold-tolerance characteristics of this invasive midge would permit it to colonize areas further south, including much of the western coast of the Antarctic Peninsula.

6.
Polar Biol ; 42(1): 115-130, 2019.
Article in English | MEDLINE | ID: mdl-30872890

ABSTRACT

Knowledge of the life cycles of non-native species in Antarctica is key to understanding their ability to establish and spread to new regions. Through laboratory studies and field observations on Signy Island (South Orkney Islands, maritime Antarctic), we detail the life stages and phenology of Eretmoptera murphyi (Schaeffer 1914), a brachypterous chironomid midge introduced to Signy in the 1960s from sub-Antarctic South Georgia where it is endemic. We confirm that the species is parthenogenetic and suggest that this enables E. murphyi to have an adult emergence period that extends across the entire maritime Antarctic summer season, unlike its sexually reproducing sister species Belgica antarctica which is itself endemic to the Antarctic Peninsula and South Shetland Islands. We report details of previously undescribed life stages, including verification of four larval instars, pupal development, egg gestation and development, reproductive viability and discuss potential environmental cues for transitioning between these developmental stages. Whilst reproductive success is limited to an extent by high mortality at eclosion, failure to oviposit and low egg-hatching rate, the population is still able to potentially double in size with every life cycle.

7.
Polar Biol ; 42(2): 271-284, 2019.
Article in English | MEDLINE | ID: mdl-30872891

ABSTRACT

Understanding the physiology of non-native species in Antarctica is key to elucidating their ability to colonise an area, and how they may respond to changes in climate. Eretmoptera murphyi is a chironomid midge introduced to Signy Island (Maritime Antarctic) from South Georgia (Sub-Antarctic) where it is endemic. Here, we explore the tolerance of this species' egg masses to heat and desiccation stress encountered within two different oviposition microhabitats (ground surface vegetation and underlying soil layer). Our data show that, whilst oviposition takes place in both substrates, egg sacs laid individually in soil are at the greatest risk of failing to hatch, whilst those aggregated in the surface vegetation have the lowest risk. The two microhabitats are characterised by significantly different environmental conditions, with greater temperature fluctuations in the surface vegetation, but lower humidity (%RH) and available water content in the soil. Egg sacs were not desiccation resistant and lost water rapidly, with prolonged exposure to 75% RH affecting survival for eggs in singly oviposited egg sacs. In contrast, aggregated egg sacs (n = 10) experienced much lower desiccation rates and survival of eggs remained above 50% in all treatments. Eggs had high heat tolerance in the context of the current microhabitat conditions on Signy. We suggest that the atypical (for this family) use of egg sac aggregation in E. murphyi has developed as a response to environmental stress. Current temperature patterns and extremes on Signy Island are unlikely to affect egg survival, but changes in the frequency and duration of extreme events could be a greater challenge.

8.
Physiol Entomol ; 43(4): 334-345, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30546196

ABSTRACT

Lethal time50 (LTime50) and lethal temp (LTemp50) are commonly used laboratory indices of arthropod cold tolerance, with the former often being employed to predict winter survival in the field. In the present study, we compare the cold tolerance of different life-history stages (nondiapausing and diapausing females, as well as males and juveniles) of a major agricultural pest: the two-spot spider mite Tetranychus urticae Koch (Acarina: Tetranychidae). Diapausing females from European populations of this species are shown to be freeze avoiding, supercooling to -23.6 ± 0.37  °C and with an LTemp50 of -23.2 °C. However, nondiapausing females [supercooling point (SCP) -19.1 ± 0.49 °C, LTemp50 -14.32 °C], males (SCP -21.27 ± 0.52  °C, LTemp50 -16 °C) and juveniles (SCP -25.34 ± 0.29 °C, LTemp50 -18.3 °C) are subclassified as strongly chill tolerant juveniles. LTime50 is 148.3 days for non-acclimated diapausing females, whereas nondiapausing females, males and juveniles reach 50% mortality by 21.7 days. When individuals are acclimated at 10 °C for a period of 7 days, no effect is found. Cold tolerance is suggested to be a major contributor to the successful spread of T. urticae across temperate countries, although it is dependent on a diapause trait, suggesting a potential target for control. Winter field trial data from diapausing females indicate that LTime50 is a reliable indicator of winter survival even within diapause, supporting the use of these indices as a valuable component within environmental niche models for the prediction of future pest invasions.

9.
Apidologie ; 47: 66-75, 2016.
Article in English | MEDLINE | ID: mdl-26855454

ABSTRACT

Bumblebees are regularly exported to countries outside their native range for the purposes of commercial pollination. In contrast to the tight regulations imposed on biological control introductions, the movement of bumblebees has largely been without risk assessment. This study represents the first formal assessment of establishment risk for Bombus terrestris dalmatinus in the UK. The ability of workers to survive winter conditions is seen as the primary barrier to establishment, given the year-round colony activity of this sub-species. We use standardised cold tolerance indices as outlined by the EU policy support action 'REBECA' as well as assessing rapid cold hardening (RCH) ability. Cold tolerance was comparable to that of the UK-native Bombus terrestris audax, including a strong RCH response. Results suggest that B. t. dalmatinus could survive mild UK winters in southern areas and potentially displace B. t. audax. The implications of ongoing climate change on establishment risks are discussed.

10.
Glob Chang Biol ; 22(2): 556-66, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26234897

ABSTRACT

Many species are more restricted in their habitat associations at the leading edges of their range margins, but some species have broadened their habitat associations in these regions during recent climate change. We examine the effects of multiple, interacting climatic variables on spatial and temporal patterns of species' habitat associations, using the speckled wood butterfly, Pararge aegeria, in Britain, as our model taxon. Our analyses reveal that this species, traditionally regarded as a woodland-dependent insect, is less restricted to woodland in regions with warmer winters and warmer and wetter summers. In addition, over the past 40 years of climate change, the species has become less restricted to woodland in locations where temperature and summer rainfall have increased most. We show that these patterns arise mechanistically because larval growth rates are slower in open (i.e. nonwoodland) habitats associated with colder microclimates in winter and greater host plant desiccation in summer. We conclude that macro- and microclimatic interactions drive variation in species' habitat associations, which for our study species resulted predominantly in a widening of habitat associations under climate change. However, species vary in their climatic and nonclimatic requirements, and so complex spatial and temporal patterns of changes in habitat associations are likely to be observed in future as the climate changes.


Subject(s)
Butterflies , Climate Change , Ecosystem , Animals , Climate , Female , Forests , Spatio-Temporal Analysis , United Kingdom
11.
J Therm Biol ; 54: 118-32, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26615734

ABSTRACT

As small bodied poikilothermic ectotherms, invertebrates, more so than any other animal group, are susceptible to extremes of temperature and low water availability. In few places is this more apparent than in the Arctic and Antarctic, where low temperatures predominate and water is unusable during winter and unavailable for parts of summer. Polar terrestrial invertebrates express a suite of physiological, biochemical and genomic features in response to these stressors. However, the situation is not as simple as responding to each stressor in isolation, as they are often faced in combination. We consider how polar terrestrial invertebrates manage this scenario in light of their physiology and ecology. Climate change is also leading to warmer summers in parts of the polar regions, concomitantly increasing the potential for drought. The interaction between high temperature and low water availability, and the invertebrates' response to them, are therefore also explored.


Subject(s)
Acclimatization/physiology , Invertebrates/physiology , Animals , Arctic Regions , Climate Change , Stress, Physiological , Temperature , Water
12.
PLoS One ; 10(7): e0131301, 2015.
Article in English | MEDLINE | ID: mdl-26196923

ABSTRACT

Virtually all temperate insects survive the winter by entering a physiological state of reduced metabolic activity termed diapause. However, there is increasing evidence that climate change is disrupting the diapause response resulting in non-diapause life stages encountering periods of winter cold. This is a significant problem for adult life stages in particular, as they must remain mobile, periodically feed, and potentially initiate reproductive development at a time when resources should be diverted to enhance stress tolerance. Here we present the first evidence of protein/meat feeding restricting rapid cold hardening (RCH) ability and increasing low temperature activity thresholds. No RCH response was noted in adult female blow flies (Calliphora vicina Robineau-Desvoidy) fed a sugar, water and liver (SWL) diet, while a strong RCH response was seen in females fed a diet of sugar and water (SW) only. The RCH response in SW flies was induced at temperatures as high as 10°C, but was strongest following 3h at 0°C. The CTmin (loss of coordinated movement) and chill coma (final appendage twitch) temperature of SWL females (-0.3 ± 0.5°C and -4.9 ± 0.5°C, respectively) was significantly higher than for SW females (-3.2 ± 0.8°C and -8.5 ± 0.6°C). We confirmed this was not directly the result of altered extracellular K+, as activity thresholds of alanine-fed adults were not significantly different from SW flies. Instead we suggest the loss of cold tolerance is more likely the result of diverting resource allocation to egg development. Between 2009 and 2013 winter air temperatures in Birmingham, UK, fell below the CTmin of SW and SWL flies on 63 and 195 days, respectively, suggesting differential exposure to chill injury depending on whether adults had access to meat or not. We conclude that disruption of diapause could significantly impact on winter survival through loss of synchrony in the timing of active feeding and reproductive development with favourable temperature conditions.


Subject(s)
Acclimatization/physiology , Animal Feed , Cold Temperature , Diptera/physiology , Meat , Animals , Female , Life Cycle Stages/physiology , Male , Reproduction/physiology
13.
J Exp Biol ; 217(Pt 9): 1454-61, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24436389

ABSTRACT

Predicting insect responses to global climate change involves understanding cross-generation effects of temperature. The majority of temperate insects overwinter in a state of diapause, a pre-emptive response to winter conditions associated with increased cold hardiness. Diapause is often induced following maternal adult detection of an environmental cue signifying the onset of winter, whilst diapause is initiated in a subsequent life stage and/or generation. Continued global warming will expose adults to higher late-autumn temperatures, whilst diapause life stages will still experience prolonged winter cold. The cross-generation effect of temperature was investigated by acclimating adult Calliphora vicina to present-day (15°C) and future (20°C) late-autumn conditions and assessing cold-hardiness in diapause (D15 and D20) and non-diapause (ND15 and ND20) progeny. A cross-generation plasticity in cold hardiness was associated with D but not ND larvae. D15 larvae exhibited an enhanced ability to suppress internal freezing (supercooling point=-18.9±0.9°C) compared with D20 (-15.3±0.8°C), and displayed a greater tolerance of prolonged exposure to -4°C (LT50=26.0±1.0 and 11.4±1.1 days, respectively) and -8°C (5.1±1.1 and 3.0±1.1 days, respectively). These changes were associated with a reduced glucose content in D15 (2.4±0.3 g mg(-1)) compared with D20 (3.0±0.3 g mg(-1)) larvae. In conclusion, C. vicina adults exposed to warmer autumn conditions during diapause induction will produce larvae with a reduced cold hardiness capacity, which could negatively impact winter survival. Given that maternal regulation of diapause is common among temperate insects, this could be a widespread phenomenon.


Subject(s)
Cold Temperature , Diptera/physiology , Larva/physiology , Metamorphosis, Biological/physiology , Acclimatization/physiology , Animals , Climate Change , Freezing , Glucose/analysis , Seasons
14.
J Exp Biol ; 217(Pt 1): 6-15, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24353199

ABSTRACT

Chill and freeze represent very different components of low temperature stress. Whilst the principal mechanisms of tissue damage and of acquired protection from freeze-induced effects are reasonably well established, those for chill damage and protection are not. Non-freeze cold exposure (i.e. chill) can lead to serious disruption to normal life processes, including disruption to energy metabolism, loss of membrane perm-selectivity and collapse of ion gradients, as well as loss of neuromuscular coordination. If the primary lesions are not relieved then the progressive functional debilitation can lead to death. Thus, identifying the underpinning molecular lesions can point to the means of building resistance to subsequent chill exposures. Researchers have focused on four specific lesions: (i) failure of neuromuscular coordination, (ii) perturbation of bio-membrane structure and adaptations due to altered lipid composition, (iii) protein unfolding, which might be mitigated by the induced expression of compatible osmolytes acting as 'chemical chaperones', (iv) or the induced expression of protein chaperones along with the suppression of general protein synthesis. Progress in all these potential mechanisms has been ongoing but not substantial, due in part to an over-reliance on straightforward correlative approaches. Also, few studies have intervened by adoption of single gene ablation, which provides much more direct and compelling evidence for the role of specific genes, and thus processes, in adaptive phenotypes. Another difficulty is the existence of multiple mechanisms, which often act together, thus resulting in compensatory responses to gene manipulations, which may potentially mask disruptive effects on the chill tolerance phenotype. Consequently, there is little direct evidence of the underpinning regulatory mechanisms leading to induced resistance to chill injury. Here, we review recent advances mainly in lower vertebrates and in arthropods, but increasingly in genetic model species from a broader range of taxa.


Subject(s)
Ataxia/pathology , Central Nervous System/physiology , Cold Temperature/adverse effects , Membrane Fluidity/physiology , Protein Folding , Adaptation, Physiological , Animals , Cell Membrane Permeability , Chills , Freezing , Ion Transport
15.
PLoS One ; 8(11): e80061, 2013.
Article in English | MEDLINE | ID: mdl-24224036

ABSTRACT

There is now considerable evidence that climate change is disrupting the phenology of key pollinator species. The recently reported UK winter activity of the bumblebee Bombus terrestris brings a novel set of thermal challenges to bumblebee workers that would typically only be exposed to summer conditions. Here we assess the ability of workers to survive acute and chronic cold stress (via lower lethal temperatures and lower lethal times at 0°C), the capacity for rapid cold hardening (RCH) and the influence of diet (pollen versus nectar consumption) on supercooling points (SCP). Comparisons are made with chronic cold stress indices and SCPs in queen bumblebees. Results showed worker bees were able to survive acute temperatures likely to be experienced in a mild winter, with queens significantly more tolerant to chronic cold temperature stress. The first evidence of RCH in any Hymenoptera is shown. In addition, dietary manipulation indicated the consumption of pollen significantly increased SCP temperature. These results are discussed in the light of winter active bumblebees and climate change.


Subject(s)
Bees/physiology , Pollen , Animal Feed , Animals , Cold Temperature
16.
J Exp Biol ; 211(Pt 4): 524-30, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18245628

ABSTRACT

During winter, larvae of the Antarctic midge, Belgica antarctica (Diptera, Chironomidae), must endure 7-8 months of continuous subzero temperatures, encasement in a matrix of soil and ice, and severely desiccating conditions. This environment, along with the fact that larvae possess a high rate of water loss and are extremely tolerant of desiccation, may promote the use of cryoprotective dehydration as a strategy for winter survival. This study investigates the capacity of larvae to resist inoculative freezing and undergo cryoprotective dehydration at subzero temperatures. Slow cooling to -3 degrees C in an environment at equilibrium with the vapor pressure of ice reduced larval water content by approximately 40% and depressed the body fluid melting point more than threefold to -2.6 degrees C. This melting point depression was the result of the concentration of existing solutes (i.e. loss of body water) and the de novo synthesis of osmolytes. By day 14 of the subzero exposure, larval survival was still >95%, suggesting larvae have the capacity to undergo cryoprotective dehydration. However, under natural conditions the use of cryoprotective dehydration may be constrained by inoculative freezing as result of the insect's intimate contact with environmental ice. During slow cooling within a substrate of frozen soil, the ability of larvae to resist inoculative freezing and undergo cryoprotective dehydration was dependent upon the moisture content of the soil. As detected by a reduction of larval water content, the percentage of larvae that resisted inoculative freezing increased with decreasing soil moisture. These results suggest that larvae of the Antarctic midge have the capacity to resist inoculative freezing at relatively low soil moisture contents and likely undergo cryoprotective dehydration when exposed to subzero temperatures during the polar winter.


Subject(s)
Adaptation, Physiological/physiology , Chironomidae/physiology , Dehydration , Freezing , Animals , Antarctic Regions , Ecosystem , Larva , Water/metabolism
17.
Proc Natl Acad Sci U S A ; 104(27): 11130-7, 2007 Jul 03.
Article in English | MEDLINE | ID: mdl-17522254

ABSTRACT

Diapause, the dormancy common to overwintering insects, evokes a unique pattern of gene expression. In the flesh fly, most, but not all, of the fly's heat shock proteins (Hsps) are up-regulated. The diapause up-regulated Hsps include two members of the Hsp70 family, one member of the Hsp60 family (TCP-1), at least four members of the small Hsp family, and a small Hsp pseudogene. Expression of an Hsp70 cognate, Hsc70, is uninfluenced by diapause, and Hsp90 is actually down-regulated during diapause, thus diapause differs from common stress responses that elicit synchronous up-regulation of all Hsps. Up-regulation of the Hsps begins at the onset of diapause, persists throughout the overwintering period, and ceases within hours after the fly receives the signal to reinitiate development. The up-regulation of Hsps appears to be common to diapause in species representing diverse insect orders including Diptera, Lepidoptera, Coleoptera, and Hymenoptera as well as in diapauses that occur in different developmental stages (embryo, larva, pupa, adult). Suppressing expression of Hsp23 and Hsp70 in flies by using RNAi did not alter the decision to enter diapause or the duration of diapause, but it had a profound effect on the pupa's ability to survive low temperatures. We thus propose that up-regulation of Hsps during diapause is a major factor contributing to cold-hardiness of overwintering insects.


Subject(s)
Cold Temperature , Diptera/physiology , Heat-Shock Proteins/biosynthesis , Insect Proteins/biosynthesis , Survival/physiology , Up-Regulation/physiology , Animals , Diptera/growth & development , Diptera/metabolism , HSP70 Heat-Shock Proteins/biosynthesis , HSP70 Heat-Shock Proteins/genetics , Heat-Shock Proteins/genetics , Heat-Shock Proteins/physiology , Insect Proteins/genetics , Insect Proteins/physiology , Molecular Sequence Data , Pupa/growth & development , Pupa/metabolism , Pupa/physiology , RNA, Messenger/biosynthesis , Up-Regulation/genetics
18.
Proc Natl Acad Sci U S A ; 104(13): 5489-94, 2007 Mar 27.
Article in English | MEDLINE | ID: mdl-17369360

ABSTRACT

Protection of poikilothermic animals from seasonal cold is widely regarded as being causally linked to changes in the unsaturation of membrane phospholipids, yet in animals this proposition remains formally untested. We have now achieved this by the genetic manipulation of lipid biosynthesis of Caenorhabditis elegans independent of temperature. Worms transferred from 25 degrees C to 10 degrees C develop over several days a much-increased tolerance of lethal cold (0 degrees C) and also an increased phospholipid unsaturation, as in higher animal models. Of the three C. elegans Delta9-desaturases, transcript levels of fat-7 only were up-regulated by cold transfer. RNAi suppression of fat-7 caused the induction of fat-5 desaturase, so to control desaturase expression we combined RNAi of fat-7 with a fat-5 knockout. These fat-5/fat-7 manipulated worms displayed the expected negative linear relationship between lipid saturation and cold tolerance at 0 degrees C, an outcome confirmed by dietary rescue. However, this change in lipid saturation explains just 16% of the observed difference between cold tolerance of animals held at 25 degrees C and 10 degrees C. Thus, although the manipulated lipid saturation affects the tolerable thermal window, and altered Delta9-desaturase expression accounts for cold-induced lipid adjustments, the effect is relatively small and none of the lipid manipulations were sufficient to convert worms between fully cold-sensitive and fully cold-tolerant states. Critically, transfer of 10 degrees C-acclimated worms back to 25 degrees C led to them restoring the usual cold-sensitive phenotype within 24 h despite retaining a lipid profile characteristic of 10 degrees C worms. Other nonlipid mechanisms of acquired cold protection clearly dominate inducible cold tolerance.


Subject(s)
Gene Expression Regulation , Lipids/chemistry , Phospholipids/metabolism , Stearoyl-CoA Desaturase/chemistry , Amanitins/chemistry , Animals , Caenorhabditis elegans , Cold Temperature , Fatty Acids/chemistry , In Situ Hybridization , Membrane Lipids/chemistry , RNA Interference , Temperature , Thermosensing
19.
J Exp Biol ; 210(Pt 5): 836-44, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17297143

ABSTRACT

Adaptations to low moisture availability are arguably as important as cold resistance for polar terrestrial invertebrates, especially because water, in the form of ice, is biologically inaccessible for much of the year. Desiccation responses under ecologically realistic soil humidity conditions--those close to the wilting points of plants [98.9% relative humidity (RH)]--have not previously been examined in polar insect species. In the current study we show that, when desiccated at 98.2% RH, larvae of the Antarctic midge Belgica antarctica are more tolerant of dehydration than larvae desiccated at lower humidities (75% RH), and develop an increased tolerance to freezing. The slow rate of desiccation at this high RH enabled more than 50% of larvae to survive the loss of >75% of their osmotically active water (OAW). Survival rates were further increased when rehydration was performed at 100% RH, rather than by direct contact with water. Two days at 98.2% RH resulted in a approximately 30% loss of OAW, and dramatically increased the freeze tolerance of larvae to -10 and -15 degrees C. The supercooling point of animals was not significantly altered by this desiccation treatment, and all larvae were frozen at -10 degrees C. This is the first evidence of desiccation increasing the freeze tolerance of a polar terrestrial arthropod. Maximum water loss and body fluid osmolality were recorded after 5 days at 98.2% RH, but osmolality values returned to predesiccated levels following just 1 h of rehydration in water, well before all the water lost through desiccation had been replenished. This suggests active removal of osmolytes from the extracellular fluids during the desiccation process, presumably to intracellular compartments. Heat-shock proteins appear not to contribute to the desiccation tolerance we observed in B. antarctica. Instead, we suggest that metabolite synthesis and membrane phospholipid adaptation are likely to be the underpinning physiological mechanisms enhancing desiccation and cold tolerance in this species.


Subject(s)
Acclimatization/physiology , Chironomidae/physiology , Cold Temperature , Dehydration/physiopathology , Animals , Antarctic Regions , Blotting, Northern , Desiccation , Heat-Shock Proteins/metabolism , Humidity , Osmotic Pressure , Survival Analysis , Time Factors
20.
Adv Exp Med Biol ; 594: 132-42, 2007.
Article in English | MEDLINE | ID: mdl-17205681

ABSTRACT

The physiological adjustment of organisms in response to temperature variation is a crucial part of coping with environmental stress. An important component of the cold response is the increase in membrane lipid unsaturation, and this has been linked to an enhanced resistance to the debilitating or lethal effects of cold. Underpinning the lipid response is the upregulation of fatty acid desaturases (des), particularly those introducing double bonds at the 9-10 position of saturated fatty acids. For plants and microbes there is good genetic evidence that regulation of des genes, and the consequent changes in lipid saturation, are causally linked to generation of a cold-tolerant phenotype. In animals, however, supporting evidence is almost entirely limited to correlations of saturation with cold conditions. We describe our recent attempts to provide a direct test of this relationship by genetic manipulation of the nematode Caenorhabditis elegans. We show that this species displays a strong cold tolerant phenotype induced by prior conditioning to cold, and that this is directly linked to upregulated des activity. However, whilst genetic disruption of des activity and lipid unsaturation significantly reduced cold tolerance, animals retained a substantial component of their stress tolerant phenotype produced by cold conditioning. This indicates that mechanisms other than lipid unsaturation play an important role in cold adaptation.


Subject(s)
Acclimatization/physiology , Cold Temperature , Lipid Metabolism , Phenotype , Animals , Plant Physiological Phenomena , Prokaryotic Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...