Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 13(2): 83-8, 1991 Apr.
Article in English | MEDLINE | ID: mdl-1888716

ABSTRACT

A number of taxonomically-related bacteria have been identified which accumulate poly(hydroxyalkanoate) (PHA) copolymers containing primarily 3-hydroxyvalerate (3HV) monomer units from a range of unrelated single carbon sources. One of these, Rhodococcus sp. NCIMB 40126, was further investigated and shown to produce a copolymer containing 75 mol% 3HV and 25 mol% 3-hydroxybutyrate (3HB) from glucose as sole carbon source. Polyesters containing both 3HV and 3HB monomer units, together with 4-hydroxybutyrate (4HB), 5-hydroxyvalerate (5HV) or 3-hydroxyhexanoate (3HHx), were also produced by this organism from certain accumulation substrates. With valeric acid as substrate, almost pure (99 mol% 3HV) poly(3-hydroxyvalerate) was produced. N.m.r. analysis confirmed the composition of these polyesters. The thermal properties and molecular weight of the copolymer produced from glucose were comparable to those of PHB produced by Alcaligenes eutrophus.


Subject(s)
Pentanoic Acids/metabolism , Polyesters/metabolism , Rhodococcus/metabolism , Glucose/metabolism , Magnetic Resonance Spectroscopy , Polyesters/chemistry , Thermodynamics
2.
Appl Environ Microbiol ; 56(11): 3354-9, 1990 Nov.
Article in English | MEDLINE | ID: mdl-16348341

ABSTRACT

A number of Pseudomonas species have been identified which accumulate a polyhydroxyalkanoate containing mainly 3-hydroxydecanoate monomers from sodium gluconate as the sole carbon source. One of these, Pseudomonas sp. strain NCIMB 40135, was further investigated and shown to accumulate such a polyhydroxyalkanoate from a wide range of carbon sources (C(2) to C(6)); however, when supplied with octanoic acid it produced a polyhydroxyalkanoate containing mainly 3-hydroxyoctanoate monomers. Polymer synthesis occurred in batch culture after cessation of growth due to exhaustion of nitrogen. In continuous culture under nitrogen limitation up to 16.9% (wt/wt) polyhydroxyalkanoate was synthesized from glucose as the carbon source. The monomer units are mainly of the R-(-) configuration. Nuclear magnetic resonance studies confirmed the composition of the polymer. Differential scanning calorimetry suggested that the solvent-extracted polymer contained a significant proportion of crystalline material. The weight-average molecular weight of the polymer from glucose-grown cells was 143,000.

3.
Int J Biol Macromol ; 12(2): 102-5, 1990 Apr.
Article in English | MEDLINE | ID: mdl-2078525

ABSTRACT

It is well established that Alcaligenes eutrophus can accumulate a copolymer containing 3-hydroxybutyrate and 3-hydroxyvalerate, but longer 3-hydroxyacid monomers have not been reported to occur in this organism. The properties of the enzymes of poly(hydroxyalkanoate) (PHA) biosynthesis are discussed and it is proposed that the substrate specificity of the polymerizing enzyme restricts the range of monomer units incorporated into PHA. Various other bacteria produce similar copolymers from propionic acid and/or valeric acid. A number of Pseudomonas species accumulate PHAs containing longer-chain monomer units from linear alkanoic acids, alkanes and alcohols.


Subject(s)
Alcaligenes/metabolism , Bacteria/metabolism , Hydroxy Acids/metabolism , Polyesters/metabolism , Polymers/metabolism , Hydroxy Acids/chemistry , Polyesters/chemistry , Polymers/chemistry
5.
Biochem J ; 247(2): 377-84, 1987 Oct 15.
Article in English | MEDLINE | ID: mdl-3322263

ABSTRACT

The effect of K+ on assays of the enzyme was studied and it appears that the activation occurs slowly by a two-step process. Kinetic measurements suggest that the enzyme-catalysed reaction can proceed slowly (0.4%) in the complete absence of K+. The enzyme exhibits a K+-activated esterase activity, which is further activated by NAD+ or NADH. Stopped-flow studies indicated that the principal effect of K+ on the dehydrogenase reaction is to accelerate a step (possibly acyl-enzyme hydrolysis) associated with a fluorescence and small absorbance transient that occurs after hydride transfer and before NADH dissociation from the terminal E-NADH complex. The variation of activity of the enzyme with pH was studied. An enzyme group with pKa approx. 7.1 apparently promotes enzyme activity when in its alkaline form.


Subject(s)
Aldehyde Dehydrogenase/metabolism , Potassium/pharmacology , Saccharomyces cerevisiae/enzymology , Acetaldehyde/metabolism , Enzyme Activation/drug effects , Hydrogen-Ion Concentration , Kinetics , Macromolecular Substances , NAD/metabolism , Spectrophotometry
7.
Biochem J ; 233(3): 877-83, 1986 Feb 01.
Article in English | MEDLINE | ID: mdl-3707531

ABSTRACT

Stopped-flow experiments in spectrophotometric and fluorescence modes reveal different aspects of the aldehyde dehydrogenase mechanism. Spectrophotometric experiments show a rapid burst of NADH production whose course is not affected by Mg2+. The slower burst seen in the fluorescence mode is markedly accelerated by Mg2+. It is argued that the fluorescence burst accompanies acyl-enzyme hydrolysis and, therefore, that Mg2+ increases the rate of this process. Experiments on the hydrolysis of p-nitrophenyl propionate indicate that acyl-enzyme hydrolysis is indeed accelerated by Mg2+ and a combination of Mg2+ and NADH. Vmax. values for p-nitrophenyl propionate hydrolysis in the presence of NADH and NADH and Mg2+ agree closely with the specific rates of acyl hydrolysis from the E . NADH . acyl and E . NADH . acyl . Mg2+ complexes seen in the dehydrogenase reaction with propionaldehyde. These observations support the view that esterase and dehydrogenase activities occur at the same site on the enzyme. Other evidence is presented to support this conclusion.


Subject(s)
Aldehyde Dehydrogenase/metabolism , Liver/enzymology , Magnesium/pharmacology , Animals , Binding Sites , Disulfiram/pharmacology , Esterases/metabolism , Hydrolysis , NAD/pharmacology , Phenylpropionates/metabolism , Sheep , Spectrophotometry
8.
Eur J Biochem ; 148(2): 277-83, 1985 Apr 15.
Article in English | MEDLINE | ID: mdl-3987688

ABSTRACT

The yeast Candida boidinii when grown on spermidine, diaminopropane, putrescine or cadaverine as sole nitrogen source contains an N-acetyltransferase capable of acetylating the primary amino groups of spermine, spermidine, acetylspermidines, acetylputrescine and alpha, omega-diaminoalkanes. In the case of spermidine, the products were N1-acetylspermidine and N8-acetylspermidine in the ratio 50:45 with traces of other unidentified products. The enzyme was partially purified and the stoichiometry determined, together with apparent Km and V values for a number of substrates. The pH optimum was about 8.8 for putrescine and 9.3 for spermidine. The unstable enzyme was partially stabilized by 10% (v/v) glycerol or bovine serum albumin (5 mg/ml). The kinetic parameters were determined with putrescine as substrate and the mechanism shown to be of the sequential type. The enzyme was shown to be located in the mitochondria of C. boidinii, in contrast to mammalian N-acetyltransferases. The enzyme was found in a number of other yeast species when grown on spermidine or putrescine, but was only present in those species that had previously been found to contain polyamine oxidase. It is suggested that in C. boidinii, as in mammals, acetylation of spermidine and putrescine must precede their catabolism.


Subject(s)
Acetyltransferases/isolation & purification , Candida/enzymology , Candida/growth & development , Drug Stability , Hot Temperature , Mitochondria/enzymology , Nitrogen/metabolism , Putrescine/metabolism , Spermidine/metabolism , Subcellular Fractions/enzymology , Substrate Specificity
9.
Biochem J ; 211(2): 481-93, 1983 May 01.
Article in English | MEDLINE | ID: mdl-6409096

ABSTRACT

1. Antiserum to purified methylamine oxidase of Candida boidinii formed precipitin lines (with spurs) in double-diffusion tests with crude extracts of methylamine-grown cells of the following yeast species: Candida nagoyaensis, Candida nemodendra, Hansenula minuta, Hansenula polymorpha and Pichia pinus. No cross-reaction was observed with extracts of Candida lipolytica, Candida steatolytica, Candida tropicalis, Candida utilis, Pichia pastoris, Sporobolomyces albo-rubescens, Sporopachydermia cereana or Trigonopsis variabilis. Quantitative enzyme assays enabled the relative titre of antiserum against the various methylamine oxidases to be determined. 2. The amine oxidases from two non-cross-reacting species, C. utilis and P. pastoris, were purified to near homogeneity. 3. The methylamine oxidases, despite their serological non-similarity, showed very similar catalytic properties to methylamine oxidase from C. boidinii. Their heat-stability, pH optima, molecular weights, substrate specificities and sensitivity to inhibitors are reported. 4. The benzylamine oxidases of C. utilis and P. pastoris both oxidized putrescine, and the latter enzyme failed to show any cross-reaction with antibody to C. boidinii methylamine oxidase. Benzylamine oxidase from C. boidinii itself also did not cross-react with antibody to methylamine oxidase. The heat-stability, molecular weights, substrate specificities and sensitivity to inhibitors of the benzylamine/putrescine oxidases are reported. 5. The benzylamine/putrescine oxidase of C. utilis differed only slightly from that of C. boidinii. 6. Benzylamine/putrescine oxidase from P. pastoris differed from the Candida enzymes in heat-stability, subunit molecular weight and substrate specificity. In particular it catalysed the oxidation of the primary amino groups of spermine, spermidine, lysine, ornithine and 1,2-diaminoethane, which are not substrates for either of the Candida benzylamine oxidases that have been purified. 7. Spermine and spermidine were oxidized at both primary amino groups; in the case of spermidine this is a different specificity from that of plasma amine oxidase. 8. Under appropriate conditions, P. pastoris benzylamine/putrescine oxidase (which is very easy to purify) can be a useful analytical tool in measuring polyamines.


Subject(s)
Oxidoreductases Acting on CH-NH Group Donors/metabolism , Yeasts/enzymology , Candida/enzymology , Hot Temperature , Immunodiffusion , Molecular Weight , Oxidoreductases Acting on CH-NH Group Donors/immunology , Oxidoreductases Acting on CH-NH Group Donors/isolation & purification , Pichia/enzymology , Substrate Specificity
10.
Biochem J ; 199(1): 187-201, 1981 Oct 01.
Article in English | MEDLINE | ID: mdl-7337701

ABSTRACT

1. The yeast Candida boidinii was grown on glucose as carbon source with a range of amines and amino acids as nitrogen sources. Cells grown on amines contained elevated activities of catalase. If the amines contained N-methyl groups, formaldehyde dehydrogenase, formate dehydrogenase and S-formylglutathione hydrolase were also elevated in activity compared with cells grown on (NH(4))(2)SO(4). 2. Cells grown on all the amines tested, but not those grown on urea or amino acids, contained an oxidase attacking primary amines, which is referred to as methylamine oxidase. In addition, cells grown on some amines contained a second amine oxidase, which is referred to as benzylamine oxidase. 3. Both amine oxidases were purified to near homogeneity. 4. Benzylamine oxidase was considerably more stable at 45 and 50 degrees C than was methylamine oxidase. 5. Both enzymes had a pH optimum in the region of 7.0, and had a considerable number of substrates in common. There were, however, significant differences in the substrate specificity of the two enzymes. The ratio V/K(app.) (m) increased with increasing n-alkyl carbon chain length for benzylamine oxidase, but decreased for methylamine oxidase. 6. Both enzymes showed similar sensitivity to carbonyl-group reagents, copper-chelating agents and other typical ;diamine oxidase inhibitors'. 7. The stoicheiometry for the reaction catalysed by each enzyme was established. 8. The kinetics of methylamine oxidase were examined by varying the methylamine and oxygen concentrations in turn. A non-Ping Pong kinetic pattern with intersecting double-reciprocal plots was obtained, giving K(m) values of 10mum for O(2) and 198mum for methylamine. The significance of this unusual kinetic behaviour is discussed. Similar experiments were not possible with the benzylamine oxidase, because it seemed to have an even lower K(m) for O(2). 9. Both enzymes had similar subunit M(r) values of about 80000, but the benzylamine oxidase behaved as if it were usually a dimer, M(r) 136000, which under certain conditions aggregated to a tetramer, M(r) 288000. Methylamine oxidase was mainly in the form of an octamer, M(r) 510000, which gave rise quite readily to dimers of M(r) 150000, and on gel filtration behaved as if the M(r) was 286000.


Subject(s)
Benzylamine Oxidase/metabolism , Candida/enzymology , Monoamine Oxidase/metabolism , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Benzylamine Oxidase/antagonists & inhibitors , Benzylamine Oxidase/isolation & purification , Culture Media , Kinetics , Molecular Weight , Oxidoreductases Acting on CH-NH Group Donors/isolation & purification , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...