Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 4045, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34193876

ABSTRACT

RAS mutations are the most common oncogenic drivers across human cancers, but there remains a paucity of clinically-validated pharmacological inhibitors of RAS, as druggable pockets have proven difficult to identify. Here, we identify two RAS-binding Affimer proteins, K3 and K6, that inhibit nucleotide exchange and downstream signaling pathways with distinct isoform and mutant profiles. Affimer K6 binds in the SI/SII pocket, whilst Affimer K3 is a non-covalent inhibitor of the SII region that reveals a conformer of wild-type RAS with a large, druggable SII/α3 pocket. Competitive NanoBRET between the RAS-binding Affimers and known RAS binding small-molecules demonstrates the potential to use Affimers as tools to identify pharmacophores. This work highlights the potential of using biologics with small interface surfaces to select unseen, druggable conformations in conjunction with pharmacophore identification for hard-to-drug proteins.


Subject(s)
Biological Products/pharmacology , Cell Surface Display Techniques/methods , Drug Discovery/methods , Neoplasms/drug therapy , ras Proteins/antagonists & inhibitors , Allosteric Site , Biological Products/chemistry , Humans , Neoplasms/chemistry , Neoplasms/enzymology , Signal Transduction , ras Proteins/metabolism
2.
N Biotechnol ; 45: 28-35, 2018 Oct 25.
Article in English | MEDLINE | ID: mdl-29474834

ABSTRACT

Cancer is frequently characterised by dysregulation of the cellular signalling processes that govern proliferation, survival and attachment. Understanding such dysregulation continues to present a challenge given the importance of protein-protein interactions in intracellular processes. Exploring this protein-protein interactome requires novel tools capable of discriminating between highly homologous proteins, individual domains and post-translational modifications. This review examines the potential of scaffold-based binding proteins to fulfil these requirements. It also explores protein-protein interactions in the context of intracellular signalling pathways and cancer, and demonstrates the uses of scaffold proteins as functional moderators, biosensors and imaging reagents. This review also highlights the timeliness and potential to develop international consortia to develop and validate highly specific "proteome" scaffold-based binding protein reagents with the ultimate aim of developing screening tools for studying the interactome.


Subject(s)
Neoplasm Proteins/chemistry , Neoplasms/metabolism , Humans , Neoplasm Proteins/metabolism , Neoplasms/chemistry , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...