Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(19): 10779-10789, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37129501

ABSTRACT

Channelrhodopsins (ChRs) are light-gated ion channels and central optogenetic tools that can control neuronal activity with high temporal resolution at the single-cell level. Although their application in optogenetics has rapidly progressed, it is unsolved how their channels open and close. ChRs transport ions through a series of interlocking elementary processes that occur over a broad time scale of subpicoseconds to seconds. During these processes, the retinal chromophore functions as a channel regulatory domain and transfers the optical input as local structural changes to the channel operating domain, the helices, leading to channel gating. Thus, the core question on channel gating dynamics is how the retinal chromophore structure changes throughout the photocycle and what rate-limits the kinetics. Here, we investigated the structural changes in the retinal chromophore of canonical ChR, C1C2, in all photointermediates using time-resolved resonance Raman spectroscopy. Moreover, to reveal the rate-limiting factors of the photocycle and channel gating, we measured the kinetic isotope effect of all photoreaction processes using laser flash photolysis and laser patch clamp, respectively. Spectroscopic and electrophysiological results provided the following understanding of the channel gating: the retinal chromophore highly twists upon the retinal Schiff base (RSB) deprotonation, causing the surrounding helices to move and open the channel. The ion-conducting pathway includes the RSB, where inflowing water mediates the proton to the deprotonated RSB. The twisting of the retinal chromophore relaxes upon the RSB reprotonation, which closes the channel. The RSB reprotonation rate-limits the channel closing.


Subject(s)
Electrophysiological Phenomena , Ion Channels , Channelrhodopsins/chemistry , Protons , Light
2.
Opt Lett ; 46(6): 1277-1280, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33720166

ABSTRACT

We have directly generated optical pulses having a duration of 0.56 ps with a peak power of 25 W by gain switching of multi-section semiconductor lasers in which the optimized lengths of the absorption and gain regions were 50 and 200 µm, respectively. Even though the experiment was conducted via impulsive optical pumping at a low temperature, we observed that the multi-section gain switching suppresses the low-energy tail and chirping inherent to conventional gain switching in single-section lasers and is useful in direct short-pulse generation.

3.
Photochem Photobiol ; 96(4): 805-814, 2020 07.
Article in English | MEDLINE | ID: mdl-31907932

ABSTRACT

The equilibrium structures and optical properties of the photolabile caged luciferin, (7-diethylaminocoumarin-4-yl)methyl caged D-luciferin (DEACM-caged D-luciferin), in aqueous solution were investigated via quantum chemical calculations. The probable conformers of DEACM-caged D-luciferin were determined by potential energy curve scans and structural optimizations. We identified 40 possible conformers of DEACM-caged D-luciferin in water by comparing the Gibbs free energy of the optimized structures. Despite the difference in their structures, the conformers were similar in terms of assignments, oscillator strengths and energies of the three low-lying excited states. From the concentrations of the conformers and their oscillator strengths, we obtained a theoretical UV/Vis spectrum of DEACM-caged D-luciferin that has two main bands of shape nearly identical to the experimental UV/Vis spectrum. The absorption bands with maxima ~ 384 and 339 nm were attributed to the electronic excitations of the caged group and the luciferin moiety, respectively, by analysis of the theoretical UV/Vis spectrum. Furthermore, the analysis showed that DEACM-caged D-luciferin is excited in the caged group only by light of wavelength ranging within 400-430 nm, which is in the long-wavelength tail of the 384 nm band. This should be tested to lower damage upon photocleavage.


Subject(s)
Benzothiazoles/chemistry , Coumarins/chemistry , Models, Theoretical , Photochemical Processes , Spectrophotometry, Ultraviolet
4.
J Photochem Photobiol B ; 189: 81-86, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30317051

ABSTRACT

Caged luciferin compounds of firefly luciferins have recently drawn much attention since firefly bioluminescence, in which D-luciferin acts as a substrate, is widely used in noninvasive gene-expression imaging, studies of in vivo cell trafficking, and the detection of enzyme activity. The objectives of this study are the development of new caged luciferins and the quantitative determination of the photophysical parameters of their photo-decomposition. We synthesized 7-(diethylaminocoumarin)-4-(yl)methyl caged D-luciferin (DEACM-caged D-luciferin) and quantitatively characterized its absorption spectrum, bioluminescence, and photoproducts using chiral HPLC chromatography, as a function of light-irradiation time. We observed that 4 min of UV irradiation generated maximum D-luciferin concentrations, which corresponds to 16.2% of the original DEACM-caged-D-luciferin concentration. Moreover, we evaluated not only the rate of photocleavage (0.20/min) from DEACM-caged D-luciferin to luciferin but also the rate of caged-luciferin degradation that did not produce luciferin (0.28/min) and the rate of luciferin decomposition (0.20/min) after exposure to irradiation with a 70 mW/cm2 high-pressure mercury lamp (254-600 nm). The formation rate of L-luciferin via DEACM-caged-D-luciferin photocleavage was smaller by a factor of 1/10 compared with that of D-luciferin. These quantitative measurements and simultaneous evaluations of photocleavage, degradation, and decomposition are the most important and original methodology presented in this study.


Subject(s)
Benzothiazoles/analysis , Coumarins/chemical synthesis , Coumarins/chemistry , Kinetics , Luminescent Measurements , Optical Rotation , Photolysis , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...