Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(32): 79120-79135, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37286824

ABSTRACT

Water scarcity affects about one billion people in the world. Around two billion people could be living in water-stressed areas by 2050. For this reason, the desalination is always evolving due to the importance of the water resources found in the seas and brackish water. As these systems are generally energy intensive, the use of a renewable energy source is among the most appropriate solution. In this paper, both experimental and numerical investigations have been conducted to evaluate the performances and the economic viability of a photovoltaic-thermal collector intended to supply a reverse osmosis (RO) unit. Experimental study is based on the input-output and dynamic system testing (DST) according to ISO 9459-5 standard method and computations use the energy and mass balances of the PV/T collector and the RO plant. Results of DST testing showed that the loss coefficient of the PV/T, the tank loss coefficient and the total tank heat capacity are 10.46 W.m-2.K-1, 1.596 W.K-1 and 388 MJ.K-1, respectively. The ability to couple the RO technology to PV/T systems has been demonstrated. The complete system has been simulated for a water salinity of 10,000 ppm and climatic data of Borj-Cedria (Tunisia) site (longitude 10° 25' 41″ E and latitude 36° 43' 04″ N). Numerical investigations showed that the electricity needs of a small off-grid desalination unit could be met by using a 6.48 m2 PV/T panel surface area. In this case, the purified water produced has a salinity of 1500 ppm and the flow rate is 24,000 l/day. For a grid connected site, the produced and auxiliary powers are found to be equal to 54% and 21%, respectively. Moreover, the economic cost of adding a PV/T system into an existing RO unit has been evaluated and the results showed that the payback period is 6 years.


Subject(s)
Water Purification , Humans , Water Purification/methods , Feasibility Studies , Osmosis , Membranes, Artificial , Water
2.
Environ Sci Pollut Res Int ; 30(12): 35366-35383, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36534247

ABSTRACT

This work aims to quantify the long-term performance improvement of solar water heater system by using both simple and hybrid nanofluids. For this purpose, transient system simulations of a flat plate solar collector have been carried out and discussed using titanium oxide, magnesium oxide, and copper oxide/multiwalled oxide-carbon nanotube nanofluid-based nanoparticles. Tunisian climatic conditions with a typical household need has been considered, and the investigations have been established in terms of energy amounts, solar fractions, and harmful CO2 emission avoidance. Results showed an increase in the collector performances using the considered nanofluids. In particular, using 0.2v% and 0.6v% TiO2 homogeneously dispersed in water reduced the auxiliary energy up to 47.6 and 60.9%, respectively, compared to the reference case using water. The flat plate solar collector has an annual production of 1294 kWh for a need of 1998 kWh, which equates to an annual coverage rate of roughly 65%. Additionally, it was shown that when MgO with MWCNT were used instead of MgO nanofluid-based nanoparticles, the solar fraction increased by 5.14%. The use of 0.6 volume percent TiO2 nanoparticles in water reduces hazardous CO2 emissions by up to 0.829 tons annually.


Subject(s)
Solar Energy , Water , Tunisia , Carbon Dioxide , Magnesium Oxide
SELECTION OF CITATIONS
SEARCH DETAIL
...