Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Prod Res ; : 1-6, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37799112

ABSTRACT

A study was conducted to investigate the anti-diabetic and anti-urease potential of Osbeckia nutans leaves (ONL). Six compounds, i.e. quercetin-3-O-glucoside, myricetin, shikimic acid, catechin, trans-ferulic acid and luteolin were identified from the butanol sub-fraction, BE2 and the ethyl acetate sub-fraction, EA5 of ONL. BE2 inhibited α-glucosidase and Jack bean urease with IC50 values of 0.036 µg/mL (437.46 µg/mL for acarbose) and 0.327 mg/mL (0.039 mg/mL for thiourea), respectively. In the glucose uptake experiment, BE2 (0.05 mg/mL) treatment resulted in a substantial increase in glucose uptake in free fatty acid (FFA)-treated cells at a concentration 10 times lower than that seen in EA5 (0.5 mg/mL) treated cells. The binding energies of quercetin-3-O-glucoside with α-glucosidase, glucose transporter GLUT4 and H. pylori urease were found to be -94.2585, -219.8271 and -254.391 kcal/mol, respectively. This study revealed that ONL has anti-diabetic and anti-urease abilities and further in-depth research may unveil its full potential.

3.
Nat Prod Res ; 36(16): 4243-4248, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34544286

ABSTRACT

Two bioactive compounds caffeic and sinapic acid were isolated from the fruit of the Piper mullesua Buch-Ham ex D Don using bioassay guided approach. These compounds were isolated from water fraction using column chromatography followed by semi preparative HPLC. These compounds showed very potent anti-diabetic and antioxidant activities. The molecular docking was carried out to predict the mode of interaction of the isolated compounds with α-glucosidase. The in vitro α-glucosidase inhibitory activity of caffeic and sinapic acid was determined, and their IC50 values were found 0.67 and 0.82 µg/ml, respectively. A QSAR equation was generated with an R2 value of 84.81%, which is suitable enough for predicting the IC50 values of test molecules. The aforementioned finding confirms the isolated compounds show very significant anti-diabetic potential which is supported by the molecular docking and QSAR study. So, it has ample scope for drug development with further in vivo and clinical study.


Subject(s)
Piper , alpha-Glucosidases , Biological Assay , Fruit/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Molecular Docking Simulation , Plant Extracts/chemistry
4.
RSC Adv ; 11(24): 14700-14709, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-35424016

ABSTRACT

Application of an alliin-based precursor for the synthesis of silver nanoparticles (Ag NPs) which is an emerging, reliable and rapid sensor of heavy metal ion contaminants in water is reported here. The Ag NPs were characterized by using UV-visible spectroscopy, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy analysis techniques. The Ag NPs simultaneously and selectively detect Hg2+ and Sn2+ ions from aqueous solution. The sensitivity and selectivity of the prepared Ag NPs towards other representative transition-metal ions, alkali metal ions and alkaline earth metal ions were also studied. For more precise evidence, a density functional theory study was carried out to understand the possible mechanism and interaction in the detection of Hg2+ and Sn2+ by Ag NPs. The limits of detection for Hg2+ and Sn2+ ions were found as 15.7 nM and 11.25 nM, respectively. This assay indicates the possible use of garlic extract-synthesized Ag NPs for sensing Hg2+ and Sn2+ in aqueous solution very significantly. So, the simple, green, eco-friendly and easy method to detect the dual metal ions may further lead to a potential sensor of heavy metal ion contaminants in water of industrial importance.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 132: 687-91, 2014 Nov 11.
Article in English | MEDLINE | ID: mdl-24907972

ABSTRACT

The synthesis of silver (Ag) nanoparticles using by pedicellamide (A), isolated from Piper pedicellatum C.DC leaf is demonstrated here. TEM analysis revealed that the Ag nanoparticles predominantly form spherical in shape. The compound 'A' act as a reducing, stabilizing and capping agent. The reaction mechanism was established by using density functional theory (DFT). Photocatalytic property of the Ag nanoparticles is investigated by degradation of Methyl Red (MR) dye under UV light. The kinetic, reaction mechanism and rate constant of photocatalytic degradation of MR was evaluated. The results show that Ag nanoparticles have suitable photocatalytic activity for the degradation of MR dye.


Subject(s)
Green Chemistry Technology/methods , Metal Nanoparticles/chemistry , Pyrroles/chemistry , Silver/chemistry , Ultraviolet Rays , Azo Compounds/chemistry , Catalysis/radiation effects , Kinetics , Pyrroles/isolation & purification , Spectrophotometry, Ultraviolet
6.
Colloids Surf B Biointerfaces ; 102: 627-34, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23107941

ABSTRACT

The synthesis of Ag, Au and Ag-Au bimetallic nanoparticles using Piper pedicellatum C.DC leaf extract is demonstrated here. The rapid formation of stable Ag and Au nanoparticles has been found using P. pedicellatum C.DC leaf extract in aqueous medium at normal atmospheric condition. Competitive reduction of Ag(+) and Au(3+) ions present simultaneously in solution during exposure to P. pedicellatum C.DC leaf extract leads to the synthesis of bimetallic Ag-Au nanoparticles in solution. Transmission electron microscopy (TEM) analysis revealed that the Ag nanoparticles predominantly form spherical in shape with the size range of 2.0±0.5-30.0±1.2 nm. In case of Au nanoparticles, the particles are spherical in shape along with few triangular, hexagonal and pentagonal shaped nanoparticles also observed. X-ray diffraction (XRD) studies revealed that the nanoparticles were face centered cubic (fcc) in shape. Fourier transform infrared spectroscopy (FTIR) showed nanoparticles were capped with plant compounds. The chemical constituents, viz. catechin, gallic acid, courmaric acid and protocatechuic acid of the leaf extract were identified which may act as a reducing, stabilizing and capping agent. The expected reaction mechanism in the formation of Ag and Au nanoparticles is also reported.


Subject(s)
Gold/chemistry , Green Chemistry Technology/methods , Metal Nanoparticles/chemistry , Piper/metabolism , Silver/chemistry , Catechin/chemistry , Gallic Acid/chemistry , Gold/metabolism , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Transmission , Silver/metabolism , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...