Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37461559

ABSTRACT

Background: Standard Breast Cancer (BC) risk prediction models based only on epidemiologic factors generally have quite poor performance, and there have been a number of risk scores proposed to improve them, such as AI-based mammographic information, polygenic risk scores and pathogenic variants. Even with these additions BC risk prediction performance is still at best moderate. In that decreased DNA repair capacity (DRC) is a major risk factor for development of cancer, we investigated the potential to improve BC risk prediction models by including a measured phenotypic DRC assay. Methods: Using blood samples from the Breast Cancer Family Registry we assessed the performance of phenotypic markers of DRC in 46 matched pairs of individuals, one from each pair with BC (with blood drawn before BC diagnosis) and the other from controls matched by age and time since blood draw. We assessed DRC in thawed cryopreserved peripheral blood mononuclear cells (PBMCs) by measuring γ-H2AX yields (a marker for DNA double-strand breaks) at multiple times from 1 to 20 hrs after a radiation challenge. The studies were performed using surface markers to discriminate between different PBMC subtypes. Results: The parameter Fres, the residual damage signal in PBMC B cells at 20 hrs post challenge, was the strongest predictor of breast cancer with an AUC (Area Under receiver-operator Curve) of 0.89 [95% Confidence Interval: 0.84-0.93] and a BC status prediction accuracy of 0.80. To illustrate the combined use of a phenotypic predictor with standard BC predictors, we combined Fres in B cells with age at blood draw, and found that the combination resulted in significantly greater BC predictive power (AUC of 0.97 [95% CI: 0.94-0.99]), an increase of 13 percentage points over age alone. Conclusions: If replicated in larger studies, these results suggest that inclusion of a fingerstick-based phenotypic DRC blood test has the potential to markedly improve BC risk prediction.

2.
Bioinorg Chem Appl ; 2022: 4805490, 2022.
Article in English | MEDLINE | ID: mdl-35686291

ABSTRACT

Multifunctional core@shell nanoparticles have been synthesized in this paper through 3 stages: NiFe2O4 nanoparticles by microwave irradiation using Pedalium murex leaf extract as a fuel, core@shell NiFe2O4@TiO2 nanoparticles by sol-gel, and NiFe2O4@TiO2@rGO by sol-gel using preprepared reduced graphene oxide obtained by modified Hummer's method. XRD analysis confirmed the presence of both cubic NiFe2O4 spinel and tetragonal TiO2 rutile phases, while Raman spectroscopy analysis displays both D and G bands (I D /I G = 1.04) associated with rGO. Morphological observations by HRTEM reveal a core-shell nanostructure formed by NiFe2O4 core as confirmed by SAED with subsequent thin layers of TiO2 and rGO. Magnetic measurements show a ferromagnetic behavior, where the saturation magnetization drops drastically from 45 emu/g for NiFe2O4 to 15 emu/g after TiO2 and rGO nonmagnetic bilayers coating. The as-fabricated multifunctional core@shell nanostructures demonstrate tunable self-heating characteristics: rise of temperature and specific absorption rate in the range of ΔT = 3-10°C and SAR = 3-58 W/g, respectively. This effectiveness is much close to the threshold temperature of hyperthermia (45°C), and the zones of inhibition show the better effective antibacterial activity of NTG against various Gram-positive and Gram-negative bacterial strains besides simultaneous good efficient, stable, and removable sonophotocatalyst toward the TC degradation.

3.
Mol Cell Biol ; 29(20): 5620-31, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19667073

ABSTRACT

hnRNP A1 binds to RNA in a cooperative manner. Initial hnRNP A1 binding to an exonic splicing silencer at the 3' end of human immunodeficiency virus type 1 (HIV-1) tat exon 3, which is a high-affinity site, is followed by cooperative spreading in a 3'-to-5' direction. As hnRNP A1 propagates toward the 5' end of the exon, it antagonizes binding of a serine/arginine-rich (SR) protein to an exonic splicing enhancer, thereby inhibiting splicing at that exon's alternative 3' splice site. tat exon 3 and the preceding intron of HIV-1 pre-mRNA can fold into an elaborate RNA secondary structure in solution, which could potentially influence hnRNP A1 binding. We report here that hnRNP A1 binding and splicing repression can occur on an unstructured RNA. Moreover, hnRNP A1 can effectively unwind an RNA hairpin upon binding, displacing a bound protein. We further show that hnRNP A1 can also spread in a 5'-to-3' direction, although when initial binding takes place in the middle of an RNA, spreading preferentially proceeds in a 3'-to-5' direction. Finally, when two distant high-affinity sites are present on the same RNA, they facilitate cooperative spreading of hnRNP A1 between the two sites.


Subject(s)
Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , RNA Splicing , RNA/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , Base Sequence , Cell Line, Tumor , Exons/genetics , Exons/physiology , HeLa Cells , Heterogeneous Nuclear Ribonucleoprotein A1 , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Humans , Molecular Sequence Data , RNA Splice Sites , tat Gene Products, Human Immunodeficiency Virus/genetics
4.
Am J Hum Genet ; 82(4): 834-48, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18371932

ABSTRACT

Survival of motor neuron 2, centromeric (SMN2) is a gene that modifies the severity of spinal muscular atrophy (SMA), a motor-neuron disease that is the leading genetic cause of infant mortality. Increasing inclusion of SMN2 exon 7, which is predominantly skipped, holds promise to treat or possibly cure SMA; one practical strategy is the disruption of splicing silencers that impair exon 7 recognition. By using an antisense oligonucleotide (ASO)-tiling method, we systematically screened the proximal intronic regions flanking exon 7 and identified two intronic splicing silencers (ISSs): one in intron 6 and a recently described one in intron 7. We analyzed the intron 7 ISS by mutagenesis, coupled with splicing assays, RNA-affinity chromatography, and protein overexpression, and found two tandem hnRNP A1/A2 motifs within the ISS that are responsible for its inhibitory character. Mutations in these two motifs, or ASOs that block them, promote very efficient exon 7 inclusion. We screened 31 ASOs in this region and selected two optimal ones to test in human SMN2 transgenic mice. Both ASOs strongly increased hSMN2 exon 7 inclusion in the liver and kidney of the transgenic animals. Our results show that the high-resolution ASO-tiling approach can identify cis-elements that modulate splicing positively or negatively. Most importantly, our results highlight the therapeutic potential of some of these ASOs in the context of SMA.


Subject(s)
Cyclic AMP Response Element-Binding Protein/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Nerve Tissue Proteins/genetics , Oligonucleotides, Antisense/pharmacology , RNA Splicing/drug effects , RNA-Binding Proteins/genetics , Animals , Base Sequence , Cell Line , Exons , Genetic Therapy , Heterogeneous Nuclear Ribonucleoprotein A1 , Humans , Introns , Mice , Mice, Transgenic , Molecular Sequence Data , Muscular Atrophy, Spinal/therapy , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/therapeutic use , SMN Complex Proteins , Survival of Motor Neuron 2 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...