Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 76(1): 318-28, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19915041

ABSTRACT

The hop plant, Humulus lupulus L., has an exceptionally high content of secondary metabolites, the hop alpha-acids, which possess a range of beneficial properties, including antiseptic action. Studies performed on the mode of action of hop iso-alpha-acids have hitherto been restricted to lactic acid bacteria. The present study investigated molecular mechanisms of hop iso-alpha-acid resistance in the model eukaryote Saccharomyces cerevisiae. Growth inhibition occurred at concentrations of hop iso-alpha-acids that were an order of magnitude higher than those found with hop-tolerant prokaryotes. Chemostat-based transcriptome analysis and phenotype screening of the S. cerevisiae haploid gene deletion collection were used as complementary methods to screen for genes involved in hop iso-alpha-acid detoxification and tolerance. This screening and further analysis of deletion mutants confirmed that yeast tolerance to hop iso-alpha-acids involves three major processes, active proton pumping into the vacuole by the vacuolar-type ATPase to enable vacuolar sequestration of iso-alpha-acids and alteration of cell wall structure and, to a lesser extent, active export of iso-alpha-acids across the plasma membrane. Furthermore, iso-alpha-acids were shown to affect cellular metal homeostasis by acting as strong zinc and iron chelators.


Subject(s)
Acids/toxicity , Antifungal Agents/toxicity , Humulus/chemistry , Plant Extracts/toxicity , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Vacuoles/metabolism , Biological Transport, Active , Gene Deletion , Gene Expression Profiling , Genes, Fungal , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development
2.
Appl Environ Microbiol ; 75(21): 6876-85, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19734328

ABSTRACT

Accumulation of glycogen and trehalose in nutrient-limited cultures of Saccharomyces cerevisiae is negatively correlated with the specific growth rate. Additionally, glucose-excess conditions (i.e., growth limitation by nutrients other than glucose) are often implicated in high-level accumulation of these storage carbohydrates. The present study investigates how the identity of the growth-limiting nutrient affects accumulation of storage carbohydrates in cultures grown at a fixed specific growth rate. In anaerobic chemostat cultures (dilution rate, 0.10 h(-1)) of S. cerevisiae, the identity of the growth-limiting nutrient (glucose, ammonia, sulfate, phosphate, or zinc) strongly affected storage carbohydrate accumulation. The glycogen contents of the biomass from glucose- and ammonia-limited cultures were 10- to 14-fold higher than those of the biomass from cultures grown under the other three glucose-excess regimens. Trehalose levels were specifically higher under nitrogen-limited conditions. These results demonstrate that storage carbohydrate accumulation in nutrient-limited cultures of S. cerevisiae is not a generic response to excess glucose but instead is strongly dependent on the identity of the growth-limiting nutrient. While transcriptome analysis of wild-type and msn2Delta msn4Delta strains confirmed that transcriptional upregulation of glycogen and trehalose biosynthesis genes is mediated by Msn2p/Msn4p, transcriptional regulation could not quantitatively account for the drastic changes in storage carbohydrate accumulation. The results of assays of glycogen synthase and glycogen phosphorylase activities supported involvement of posttranscriptional regulation. Consistent with the high glycogen levels in ammonia-limited cultures, the ratio of glycogen synthase to glycogen phosphorylase in these cultures was up to eightfold higher than the ratio in the other glucose-excess cultures.


Subject(s)
Ammonia/metabolism , Carbohydrate Metabolism , Phosphates/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Sulfates/metabolism , Zinc/metabolism , Anaerobiosis , Biosynthetic Pathways/genetics , Culture Media/chemistry , Gene Expression Profiling , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/biosynthesis
4.
Appl Environ Microbiol ; 73(23): 7680-92, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17933919

ABSTRACT

Transcriptional responses of the yeast Saccharomyces cerevisiae to Zn availability were investigated at a fixed specific growth rate under limiting and abundant Zn concentrations in chemostat culture. To investigate the context dependency of this transcriptional response and eliminate growth rate-dependent variations in transcription, yeast was grown under several chemostat regimens, resulting in various carbon (glucose), nitrogen (ammonium), zinc, and oxygen supplies. A robust set of genes that responded consistently to Zn limitation was identified, and the set enabled the definition of the Zn-specific Zap1p regulon, comprised of 26 genes and characterized by a broader zinc-responsive element consensus (MHHAACCBYNMRGGT) than so far described. Most surprising was the Zn-dependent regulation of genes involved in storage carbohydrate metabolism. Their concerted down-regulation was physiologically relevant as revealed by a substantial decrease in glycogen and trehalose cellular content under Zn limitation. An unexpectedly large number of genes were synergistically or antagonistically regulated by oxygen and Zn availability. This combinatorial regulation suggested a more prominent involvement of Zn in mitochondrial biogenesis and function than hitherto identified.


Subject(s)
Mycology/methods , Saccharomyces cerevisiae/drug effects , Transcription, Genetic/drug effects , Zinc/pharmacology , Base Sequence , Carbohydrate Metabolism/drug effects , Carbon/metabolism , Culture Media/metabolism , Culture Media/pharmacology , Gene Expression Regulation, Fungal/drug effects , Genes, Fungal , Genome, Fungal , Glycogen/metabolism , Mycology/instrumentation , Nitrogen/metabolism , Oxygen/metabolism , Regulon/genetics , Response Elements/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Trehalose/metabolism , Zinc/metabolism
5.
FEMS Yeast Res ; 6(6): 937-45, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16911515

ABSTRACT

Saccharomyces cerevisiae can use a broad range of compounds as sole nitrogen source. Many amino acids, such as leucine, tyrosine, phenylalanine and methionine, are utilized through the Ehrlich pathway. The fusel acids and alcohols produced from this pathway, along with their derived esters, are important contributors to beer and wine flavor. It is unknown how these compounds are exported from the cell. Analysis of nitrogen-source-dependent transcript profiles via microarray analysis of glucose-limited, aerobic chemostat cultures revealed a common upregulation of PDR12 in cultures grown with leucine, methionine or phenylalanine as sole nitrogen source. PDR12 encodes an ABC transporter involved in weak-organic-acid resistance, which has hitherto been studied in the context of resistance to exogenous organic acids. The hypothesis that PDR12 is involved in export of natural products of amino acid catabolism was evaluated by analyzing the phenotype of null mutants in PDR12 or in WAR1, its positive transcriptional regulator. The hypersensitivity of the pdr12Delta and war1Delta strains for some of these compounds indicates that Pdr12p is involved in export of the fusel acids, but not the fusel alcohols derived from leucine, isoleucine, valine, phenylalanine and tryptophan.


Subject(s)
ATP-Binding Cassette Transporters/physiology , Amino Acids/metabolism , Carboxylic Acids/metabolism , Membrane Transport Proteins/physiology , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/metabolism , ATP-Binding Cassette Transporters/genetics , Gene Deletion , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...