Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Emerg Med ; 12: 19, 2012 Dec 18.
Article in English | MEDLINE | ID: mdl-23249290

ABSTRACT

BACKGROUND: Despite the use of e-FAST in management of patients with abdominal trauma, its utility in prehospital setting is not widely adopted. The goal of this study is to develop a novel portable telesonography (TS) system and evaluate the comparability of the quality of images obtained via this system among healthy volunteers who undergo e-FAST abdominal examination in a moving ambulance and at the ED. We hypothesize that: (1) real-time ultrasound images of acute trauma patients in the pre-hospital setting can be obtained and transmitted to the ED via the novel TS system; and (2) Ultrasound images transmitted to the hospital from the real-time TS system will be comparable in quality to those obtained in the ED. METHODS: Study participants are three healthy volunteers (one each with normal, overweight and obese BMI category). The ultrasound images will be obtained by two ultrasound-trained physicians The TS is a portable sonogram (by Sonosite) interfaced with a portable broadcast unit (by Live-U). Two UTPs will conduct e-FAST examinations on healthy volunteers in moving ambulances and transmit the images via cellular network to the hospital server, where they are stored. Upon arrival in the ED, the same UTPs will obtain another set of images from the volunteers, which are then compared to those obtained in the moving ambulances by another set of blinded UTPs (evaluators) using a validated image quality scale, the Questionnaire for User Interaction Satisfaction (QUIS). DISCUSSION: Findings from this study will provide needed data on the validity of the novel TS in transmitting live images from moving ambulances to images obtained in the ED thus providing opportunity to facilitate medical care of a patient located in a remote or austere setting.


Subject(s)
Abdominal Injuries/diagnostic imaging , Emergency Medical Services/methods , Telemedicine/methods , Ultrasonography/instrumentation , Adult , Ambulances , Analysis of Variance , Body Mass Index , Computer Systems/trends , Data Display/standards , Emergency Medical Services/trends , Humans , New Jersey , Reproducibility of Results , Telemedicine/trends , Ultrasonography/methods
2.
Article in English | MEDLINE | ID: mdl-23367246

ABSTRACT

There is not sufficient access to medical care or medical expertise in many parts of the world. An innovative telemedicine system has been developed to provide expert medical guidance to field caregivers [who have less medical expertise but can reach the patient population in need]. Real-time ultrasound video images have been securely transmitted from the Dominican Republic to Hackensack University Medical Center, Hackensack NJ (HackensackUMC), while the expert physician at HackensackUMC maintained direct voice communication with the field caregiver. Utilizing a portable ultrasound machine (Sonosite) integrated with portable broadcasting device (LiveU), extended Focused Assessment Sonography in Trauma (e-FAST) examinations were performed on healthy volunteers and transmitted via the local cellular network. Additionally, two e-FAST examinations were conducted from a remote location without cellular coverage and transmitted via broad ground area network (BGAN) satellites. The demonstration took the technology "out of the lab" and into a real life, austere environment. The conditions of the Dominican Republic ultrasound mission provided experience on how to manage and utilize this innovative technology in areas where reliable communications and medical coverage are not readily available. The resilient transmission capabilities coupled with the security features deem this portable Telesonography (TS) equipment highly useful in the telemedicine forefront by offering healthcare in underdeveloped areas as well as potentially enhancing throughput in disaster situations.


Subject(s)
Internationality , Telemedicine , Ultrasonography , Quality of Health Care
3.
J Biomed Opt ; 16(7): 076008, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21806269

ABSTRACT

Confocal mosaicing microscopy enables rapid imaging of large areas of fresh tissue, without the processing that is necessary for conventional histology. Mosaicing may offer a means to perform rapid histology at the bedside. A possible barrier toward clinical acceptance is that the mosaics are based on a single mode of grayscale contrast and appear black and white, whereas histology is based on two stains (hematoxylin for nuclei, eosin for cellular cytoplasm and dermis) and appears purple and pink. Toward addressing this barrier, we report advances in digital staining: fluorescence mosaics that show only nuclei, are digitally stained purple and overlaid on reflectance mosaics, which show only cellular cytoplasm and dermis, and are digitally stained pink. With digital staining, the appearance of confocal mosaics mimics the appearance of histology. Using multispectral analysis and color matching functions, red, green, and blue (RGB) components of hematoxylin and eosin stains in tissue were determined. The resulting RGB components were then applied in a linear algorithm to transform fluorescence and reflectance contrast in confocal mosaics to the absorbance contrast seen in pathology. Optimization of staining with acridine orange showed improved quality of digitally stained mosaics, with good correlation to the corresponding histology.


Subject(s)
Microscopy, Confocal/methods , Skin/pathology , Acridine Orange , Algorithms , Dermatologic Surgical Procedures , Fluorescent Dyes , Humans , Image Enhancement/methods , In Vitro Techniques , Mohs Surgery , Staining and Labeling/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...