Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Autism ; 13(1): 28, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35761377

ABSTRACT

BACKGROUND: Canonical babbling-producing syllables with a mature consonant, full vowel, and smooth transition-is an important developmental milestone that typically occurs in the first year of life. Some studies indicate delayed or reduced canonical babbling in infants at high familial likelihood for autism spectrum disorder (ASD) or who later receive an ASD diagnosis, but evidence is mixed. More refined characterization of babbling in the first year of life in infants with high likelihood for ASD is needed. METHODS: Vocalizations produced at 6 and 12 months by infants (n = 267) taking part in a longitudinal study were coded for canonical and non-canonical syllables. Infants were categorized as low familial likelihood (LL), high familial likelihood diagnosed with ASD at 24 months (HL-ASD) or not diagnosed (HL-Neg). Language delay was assessed based on 24-month expressive and receptive language scores. Canonical babble ratio (CBR) was calculated by dividing the number of canonical syllables by the number of total syllables. Generalized linear (mixed) models were used to assess the relationship between group membership and CBR, controlling for site, sex, and maternal education. Logistic regression was used to assess whether canonical babbling ratios at 6 and 12 months predict 24-month diagnostic outcome. RESULTS: No diagnostic group differences in CBR were detected at 6 months, but HL-ASD infants produced significantly lower CBR than both the HL-Neg and LL groups at 12 months. HL-Neg infants with language delay also showed reduced CBR at 12 months. Neither 6- nor 12-month CBR was significant predictors of 24-month diagnostic outcome (ASD versus no ASD) in logistic regression. LIMITATIONS: Small numbers of vocalizations produced by infants at 6 months may limit the reliability of CBR estimates. It is not known if results generalize to infants who are not at high familial likelihood, or infants from more diverse racial and socioeconomic backgrounds. CONCLUSIONS: Lower canonical babbling ratios are apparent by the end of the first year of life in ASD regardless of later language delay, but are also observed for infants with later language delay without ASD. Canonical babbling may lack specificity as an early marker when used on its own.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Language Development Disorders , Autism Spectrum Disorder/diagnosis , Humans , Infant , Language Development Disorders/diagnosis , Longitudinal Studies , Reproducibility of Results
2.
J Neurodev Disord ; 10(1): 29, 2018 10 22.
Article in English | MEDLINE | ID: mdl-30348077

ABSTRACT

BACKGROUND: Language delay is extremely common in children with autism spectrum disorder (ASD), yet it is unclear whether measurable variation in early language is associated with genetic liability for ASD. Assessment of language development in unaffected siblings of children with ASD can inform whether decreased early language ability aggregates with inherited risk for ASD and serves as an ASD endophenotype. METHODS: We implemented two approaches: (1) a meta-analysis of studies comparing language delay, a categorical indicator of language function, and language scores, a continuous metric, in unaffected toddlers at high and low familial risk for ASD, and (2) a parallel analysis of 350 unaffected 24-month-olds in the Infant Brain Imaging Study (IBIS), a prospective study of infants at high and low familial risk for ASD. An advantage of the former was its detection of group differences from pooled data across unique samples; an advantage of the latter was its sensitivity in quantifying early manifestations of language delay while accounting for covariates within a single large sample. RESULTS: Meta-analysis showed that high-risk siblings without ASD (HR-noASD) were three to four times more likely to exhibit language delay versus low-risk siblings without ASD (LR-noASD) and had lower mean receptive and expressive language scores. Analyses of IBIS data corroborated that language delay, specifically receptive language delay, was more frequent in the HR-noASD (n = 235) versus LR-noASD group (n = 115). IBIS language scores were continuously and unimodally distributed, with a pathological shift towards decreased language function in HR-noASD siblings. The elevated inherited risk for ASD was associated with lower receptive and expressive language scores when controlling for sociodemographic factors. For receptive but not expressive language, the effect of risk group remained significant even when controlling for nonverbal cognition. CONCLUSIONS: Greater frequency of language delay and a lower distribution of language scores in high-risk, unaffected toddler-aged siblings support decreased early language ability as an endophenotype for ASD, with a more pronounced effect for receptive versus expressive language. Further characterization of language development is warranted to refine genetic investigations of ASD and to elucidate factors influencing the progression of core autistic traits and related symptoms.


Subject(s)
Autism Spectrum Disorder/complications , Autism Spectrum Disorder/genetics , Endophenotypes , Language Development Disorders/complications , Language Development Disorders/genetics , Siblings/psychology , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/psychology , Brain/physiopathology , Child, Preschool , Female , Genetic Predisposition to Disease , Humans , Infant , Language Development Disorders/physiopathology , Male , Prospective Studies
3.
Biol Psychiatry ; 82(3): 186-193, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28392081

ABSTRACT

BACKGROUND: We previously reported that infants who developed autism spectrum disorder (ASD) had increased cerebrospinal fluid (CSF) in the subarachnoid space (i.e., extra-axial CSF) from 6 to 24 months of age. We attempted to confirm and extend this finding in a larger independent sample. METHODS: A longitudinal magnetic resonance imaging study of infants at risk for ASD was carried out on 343 infants, who underwent neuroimaging at 6, 12, and 24 months. Of these infants, 221 were at high risk for ASD because of an older sibling with ASD, and 122 were at low risk with no family history of ASD. A total of 47 infants were diagnosed with ASD at 24 months and were compared with 174 high-risk and 122 low-risk infants without ASD. RESULTS: Infants who developed ASD had significantly greater extra-axial CSF volume at 6 months compared with both comparison groups without ASD (18% greater than high-risk infants without ASD; Cohen's d = 0.54). Extra-axial CSF volume remained elevated through 24 months (d = 0.46). Infants with more severe autism symptoms had an even greater volume of extra-axial CSF from 6 to 24 months (24% greater at 6 months, d = 0.70; 15% greater at 24 months, d = 0.70). Extra-axial CSF volume at 6 months predicted which high-risk infants would be diagnosed with ASD at 24 months with an overall accuracy of 69% and corresponding 66% sensitivity and 68% specificity, which was fully cross-validated in a separate sample. CONCLUSIONS: This study confirms and extends previous findings that increased extra-axial CSF is detectable at 6 months in high-risk infants who develop ASD. Future studies will address whether this anomaly is a contributing factor to the etiology of ASD or an early risk marker for ASD.


Subject(s)
Autism Spectrum Disorder/cerebrospinal fluid , Autism Spectrum Disorder/diagnostic imaging , Cerebrospinal Fluid/diagnostic imaging , Autism Spectrum Disorder/genetics , Axis, Cervical Vertebra , Cerebral Ventricles/diagnostic imaging , Child, Preschool , Female , Genetic Predisposition to Disease , Humans , Image Processing, Computer-Assisted , Infant , Longitudinal Studies , Magnetic Resonance Imaging , Male , Motor Skills , Organ Size , Pattern Recognition, Automated , Prodromal Symptoms , Prognosis , Sensitivity and Specificity , Severity of Illness Index , Siblings , Subarachnoid Space
4.
J Intellect Disabil Res ; 57(11): 1037-49, 2013 Nov.
Article in English | MEDLINE | ID: mdl-22998325

ABSTRACT

BACKGROUND: Increasing evidence suggests that autism is a disorder of distributed neural networks that may exhibit abnormal developmental trajectories. Characterisation of white matter early in the developmental course of the disorder is critical to understanding these aberrant trajectories. METHODS: A cross-sectional study of 2- to 6-year-old children with autism was conducted using diffusion tensor imaging combined with a novel statistical approach employing fractional anisotropy distributions. Fifty-eight children aged 18-79 months were imaged: 33 were diagnosed with autism, 8 with general developmental delay, and 17 were typically developing. Fractional anisotropy values within global white matter, cortical lobes and the cerebellum were measured and transformed to random F distributions for each subject. Each distribution of values for a region was summarised by estimating δ, the estimated mean and standard deviation of the approximating F for each distribution. RESULTS: The estimated δ parameter, , was significantly decreased in individuals with autism compared to the combined control group. This was true in all cortical lobes, as well as in the cerebellum, but differences were most robust in the temporal lobe. Predicted developmental trajectories of across the age range in the sample showed patterns that partially distinguished the groups. Exploratory analyses suggested that the variability, rather than the central tendency, component of was the driving force behind these results. CONCLUSIONS: While preliminary, our results suggest white matter in young children with autism may be abnormally homogeneous, which may reflect poorly organised or differentiated pathways, particularly in the temporal lobe, which is important for social and emotional cognition.


Subject(s)
Autistic Disorder/pathology , Brain/pathology , Diffusion Tensor Imaging/methods , Nerve Fibers, Myelinated/pathology , Anisotropy , Brain/growth & development , Cerebellum/growth & development , Cerebellum/pathology , Cerebral Cortex/growth & development , Cerebral Cortex/pathology , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Longitudinal Studies , Male
SELECTION OF CITATIONS
SEARCH DETAIL