Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Psychiatry ; 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38346480

ABSTRACT

BACKGROUND: Experience-dependent functional adaptation of nucleus accumbens (NAc) circuitry underlies the development and expression of reward-motivated behaviors. Parvalbumin-expressing GABAergic (gamma-aminobutyric acidergic) interneurons (PVINs) within the NAc are required for this process. Perineuronal nets (PNNs) are extracellular matrix structures enriched around PVINs that arise during development and have been proposed to mediate brain circuit stability. However, their function in the adult NAc is largely unknown. Here, we studied the developmental emergence and adult regulation of PNNs in the NAc of male and female mice and examined the cellular and behavioral consequences of reducing the PNN component brevican in NAc PVINs. METHODS: We characterized the expression of PNN components in mouse NAc using immunofluorescence and RNA in situ hybridization. We lowered brevican in NAc PVINs of adult mice using an intersectional viral and genetic method and quantified the effects on synaptic inputs to NAc PVINs and reward-motivated learning. RESULTS: PNNs around NAc PVINs were developmentally regulated and appeared during adolescence. In the adult NAc, PVIN PNNs were also dynamically regulated by cocaine. Transcription of the gene that encodes brevican was regulated in a cell type- and isoform-specific manner in the NAc, with the membrane-tethered form of brevican being highly enriched in PVINs. Lowering brevican in NAc PVINs of adult mice decreased their excitatory inputs and enhanced both short-term novel object recognition and cocaine-induced conditioned place preference. CONCLUSIONS: Regulation of brevican in NAc PVINs of adult mice modulates their excitatory synaptic drive and sets experience thresholds for the development of motivated behaviors driven by rewarding stimuli.

2.
Mol Psychiatry ; 28(8): 3414-3428, 2023 Aug.
Article in English | MEDLINE | ID: mdl-35173267

ABSTRACT

Parvalbumin-expressing (PV+) interneurons of the nucleus accumbens (NAc) play an essential role in the addictive-like behaviors induced by psychostimulant exposure. To identify molecular mechanisms of PV+ neuron plasticity, we isolated interneuron nuclei from the NAc of male and female mice following acute or repeated exposure to amphetamine (AMPH) and sequenced for cell type-specific RNA expression and chromatin accessibility. AMPH regulated the transcription of hundreds of genes in PV+ interneurons, and this program was largely distinct from that regulated in other NAc GABAergic neurons. Chromatin accessibility at enhancers predicted cell-type specific gene regulation, identifying transcriptional mechanisms of differential AMPH responses. Finally, we assessed expression of PV-enriched, AMPH-regulated genes in an Mecp2 mutant mouse strain that shows heightened behavioral sensitivity to psychostimulants to explore the functional importance of this transcriptional program. Together these data provide novel insight into the cell-type specific programs of transcriptional plasticity in NAc neurons that underlie addictive-like behaviors.


Subject(s)
Amphetamine , Central Nervous System Stimulants , Male , Female , Mice , Animals , Amphetamine/pharmacology , Nucleus Accumbens/metabolism , Central Nervous System Stimulants/pharmacology , Interneurons/metabolism , GABAergic Neurons , Chromatin/metabolism
3.
Nat Methods ; 18(8): 965-974, 2021 08.
Article in English | MEDLINE | ID: mdl-34341582

ABSTRACT

CRISPR-Cas9 technologies have dramatically increased the ease of targeting DNA sequences in the genomes of living systems. The fusion of chromatin-modifying domains to nuclease-deactivated Cas9 (dCas9) has enabled targeted epigenome editing in both cultured cells and animal models. However, delivering large dCas9 fusion proteins to target cells and tissues is an obstacle to the widespread adoption of these tools for in vivo studies. Here, we describe the generation and characterization of two conditional transgenic mouse lines for epigenome editing, Rosa26:LSL-dCas9-p300 for gene activation and Rosa26:LSL-dCas9-KRAB for gene repression. By targeting the guide RNAs to transcriptional start sites or distal enhancer elements, we demonstrate regulation of target genes and corresponding changes to epigenetic states and downstream phenotypes in the brain and liver in vivo, and in T cells and fibroblasts ex vivo. These mouse lines are convenient and valuable tools for facile, temporally controlled, and tissue-restricted epigenome editing and manipulation of gene expression in vivo.


Subject(s)
CRISPR-Cas Systems , Epigenesis, Genetic , Epigenome , Gene Editing/methods , Gene Expression Regulation , Animals , Brain/metabolism , Female , Fibroblasts/metabolism , Humans , Liver/metabolism , Male , Mice , Mice, Transgenic , T-Lymphocytes/metabolism
4.
Cell Rep ; 26(5): 1174-1188.e5, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30699347

ABSTRACT

Neuronal activity-inducible gene transcription correlates with rapid and transient increases in histone acetylation at promoters and enhancers of activity-regulated genes. Exactly how histone acetylation modulates transcription of these genes has remained unknown. We used single-cell in situ transcriptional analysis to show that Fos and Npas4 are transcribed in stochastic bursts in mouse neurons and that membrane depolarization increases mRNA expression by increasing burst frequency. We then expressed dCas9-p300 or dCas9-HDAC8 fusion proteins to mimic or block activity-induced histone acetylation locally at enhancers. Adding histone acetylation increased Fos transcription by prolonging burst duration and resulted in higher Fos protein levels and an elevation of resting membrane potential. Inhibiting histone acetylation reduced Fos transcription by reducing burst frequency and impaired experience-dependent Fos protein induction in the hippocampus in vivo. Thus, activity-inducible histone acetylation tunes the transcriptional dynamics of experience-regulated genes to affect selective changes in neuronal gene expression and cellular function.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Expression Regulation , Histones/metabolism , Neurons/metabolism , Transcription, Genetic , Acetylation , Action Potentials , Alleles , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , Cell Membrane/metabolism , Mice , Nuclear Proteins/metabolism , Promoter Regions, Genetic , Proto-Oncogene Proteins c-fos/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism
5.
Neurosci Biobehav Rev ; 85: 102-116, 2018 02.
Article in English | MEDLINE | ID: mdl-28472631

ABSTRACT

Recent research has linked early life exposure to selective serotonin reuptake inhibitor medications (SSRIs) to modifications of social behaviors in children. Serotonin is a key regulator of neurodevelopment, social behaviors and mental health, and with the growing use of SSRIs to treat maternal affective disorders during the perinatal period, questions have been raised about the benefits and risks of perinatal SSRI exposure on the developing child. This review will highlight how perinatal SSRIs affect maternal care and neurodevelopmental outcomes related to social affiliative behaviors in offspring; such as play behaviors, social interactions, reproductive behaviors, and maternal care of the next generation. We will also review how early life exposure to SSRIs can alter related neurobiology, and the epigenome. Both clinical research and findings from animal models will be discussed. Understanding the impact of perinatal SSRIs on neurobehavioral outcomes will improve the health and well-being of subsequent generations.


Subject(s)
Mood Disorders/drug therapy , Prenatal Exposure Delayed Effects/drug therapy , Selective Serotonin Reuptake Inhibitors/pharmacology , Serotonin/pharmacology , Social Behavior , Animals , Depression/drug therapy , Female , Humans , Pregnancy
6.
Psychoneuroendocrinology ; 84: 159-171, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28735226

ABSTRACT

Selective serotonin reuptake inhibitor medications (SSRIs) are the first lines of treatment for maternal affective disorders, and are prescribed to up to 10% of pregnant women. Concern has been raised about how perinatal exposure to these medications affect offspring neurobehavioral outcomes, particularly those related to social interactions, as recent research has reported conflicting results related to autism spectrum disorder (ASD) risk in children prenatally exposed to SSRIs. Therefore, the aim of this work was to investigate the effects of perinatal exposure to the SSRI fluoxetine on social play behaviors and the hypothalamic pituitary adrenal system, using a model of pre-gestational maternal stress. We also investigated synaptic proteins in the CA2, CA3, and dentate gyrus of the hippocampus, as well as number of immature neurons in the granule cell layer, as both measures of plasticity in the hippocampus have been linked to social behaviors. In pre-adolescent male and female Sprague-Dawley rat offspring, main findings show that perinatal fluoxetine prevents the negative effect of maternal stress on sibling play behavior. However, perinatal fluoxetine increased social aggressive play with a novel conspecific in both sexes and decreased time grooming a novel conspecific in males only. Perinatal fluoxetine also increased serum corticosteroid binding globulin levels, 5-HT levels in the hippocampus, and pre-synaptic density assessed via synaptophysin in the dentate gyrus. Social interaction was significantly correlated with changes in plasticity in the CA2 region of the hippocampus. Pre-gestational maternal stress exposure resulted in significantly decreased rates of hippocampal neurogenesis and synaptophysin density in the dentate gyrus of pre-adolescent males, but not females. Together, these results further characterize the role of perinatal SSRIs, maternal stress prior to conception, and sex/gender on developing social behaviors and related plasticity in the hippocampus of pre-adolescent offspring.


Subject(s)
Fluoxetine/adverse effects , Stress, Psychological/metabolism , Animals , Anxiety/drug therapy , Behavior, Animal/drug effects , Depression/drug therapy , Female , Fluoxetine/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Interpersonal Relations , Male , Maternal Exposure , Neurogenesis/drug effects , Neuronal Plasticity/drug effects , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Rats , Rats, Sprague-Dawley , Selective Serotonin Reuptake Inhibitors/pharmacology , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...