Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Phytoremediation ; 21(11): 1072-1079, 2019.
Article in English | MEDLINE | ID: mdl-31084360

ABSTRACT

The development of more sustainable remediation techniques has been receiving greater attention, as an alternative to soil excavation plan in urban gardens. An in situ phytoextraction experiment with buckwheat (Fagopyrum esculentum) was performed with a 5 mmol kg-1 citric acid (CA) application. Joint experiments under laboratory conditions were conducted using various cultivars of F. esculentum in two soils with a Pb contamination of either geogenic or anthropogenic origin and various chelate concentrations. Results show that a minimum dose of 50 mmol kg-1 of CA is required to lower soil pH and raise the concentration of mobile Pb-CaCl2 for both soils. Consequently, Pb shoot uptake is increased from 6.3 to 8.9 times depending on soil type. Phytoextraction efficiency is found to be 1.3 to 2.0 times higher in the anthropogenic contaminated soil than in the soil with geogenic Pb. A scale effect has also been identified since Pb root accumulation under laboratory conditions was 2.4 times higher than in the field experiment. Despite an increase in the Pb extraction rate with CA, buckwheat appears to lack the efficiency needed to remove Pb in moderately contaminated soils. The calculated remediation period would last 166 years to remove the mobile Pb fraction.


Subject(s)
Fagopyrum , Soil Pollutants , Biodegradation, Environmental , Lead , Soil
2.
Environ Sci Pollut Res Int ; 25(21): 20680-20690, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29752674

ABSTRACT

With the aim of improving the phytoextraction rate of cesium (Cs), the effect of Pseudomonas fluorescens ATCC 17400 and its siderophore pyoverdine (PVD) on the uptake of Cs by red clover was studied in soil pots. This work also provides a mechanistic understanding of the Cs-bacteria (or PVD)-illite-plant interactions by using a simplified experimental design, i.e., hydroponics with either Cs in solution or Cs-spiked illite in suspension. For soil spiked with 11.2 mmol kg-1 (1480 mg kg-1) of Cs, 0.43% of total Cs was taken up by red clover in 12 days (119 µmol g-1 (16 mg g-1) of Cs dry matter in roots and 40 µmol g-1 (5 mg g-1) in shoots). In hydroponics with Cs in solution (0.1 mmol L-1 or 13 mg L-1), 75% of Cs was taken up vs. only 0.86% with Cs-spiked illite suspension. P. fluorescens and PVD did not increase Cs concentrations in aboveground parts and roots of red clover and even decreased them. The damaging effect of PVD on red clover growth was demonstrated with the biomass yielding 66% of the control in soil pots (and 100% mortality after 12 days of exposition) and only 56% in hydroponics (78% with illite in suspension). Nonetheless, PVD and, to a lesser extent, P. fluorescens increased the translocation factor up to a factor of 2.8. This study clearly showed a direct damaging effect of PVD and to a lower extent the retention of Cs by biofilm covering both the roots and illite, both resulting in the lower phytoextraction efficiency.


Subject(s)
Cesium/analysis , Oligopeptides/toxicity , Pseudomonas fluorescens/growth & development , Siderophores/toxicity , Soil Pollutants/analysis , Trifolium/metabolism , Biodegradation, Environmental , Biomass , Cesium/metabolism , Hydroponics , Oligopeptides/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/microbiology , Pseudomonas fluorescens/metabolism , Siderophores/metabolism , Soil/chemistry , Soil Pollutants/metabolism , Trifolium/drug effects , Trifolium/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...