Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 11(5): 5113-5119, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28463486

ABSTRACT

Recent developments in nanophotonics have provided a clear roadmap for improving the efficiency of photonic devices through control over absorption and emission of devices. These advances could prove transformative for a wide variety of devices, such as photovoltaics, photoelectrochemical devices, photodetectors, and light-emitting diodes. However, it is often challenging to physically create the nanophotonic designs required to engineer the optical properties of devices. Here, we present a platform based on crystalline indium phosphide that enables thin-film nanophotonic structures with physical morphologies that are impossible to achieve through conventional state-of-the-art material growth techniques. Here, nanostructured InP thin films have been demonstrated on non-epitaxial alumina inverted nanocone (i-cone) substrates via a low-cost and scalable thin-film vapor-liquid-solid growth technique. In this process, indium films are first evaporated onto the i-cone structures in the desired morphology, followed by a high-temperature step that causes a phase transformation of the indium into indium phosphide, preserving the original morphology of the deposited indium. Through this approach, a wide variety of nanostructured film morphologies are accessible using only control over evaporation process variables. Critically, the as-grown nanotextured InP thin films demonstrate excellent optoelectronic properties, suggesting this platform is promising for future high-performance nanophotonic devices.

2.
Nat Commun ; 7: 10502, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26813257

ABSTRACT

The III-V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III-V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III-V's on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III-V's of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. The patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. The work presents an important advance towards universal integration of III-V's on application-specific substrates by direct growth.

3.
ACS Nano ; 9(12): 11551-6, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26498635

ABSTRACT

We present a comparative study of quasi-metallic (Eg ∼ 100 meV) and semiconducting (Eg ∼ 1 eV) suspended carbon nanotube pn-junctions introduced by electrostatic gating. While the built-in fields of the quasi-metallic carbon nanotubes (CNTs) are 1-2 orders of magnitude smaller than those of the semiconducting CNTs, their photocurrent is 2 orders of magnitude higher than the corresponding semiconducting CNT devices under the same experimental conditions. Here, the large exciton binding energy in semiconducting nanotubes (∼400 meV) makes it difficult for excitons to dissociate into free carriers that can contribute to an externally measured photocurent. As such, semiconducting nanotubes require a phonon to assist in the exciton dissociation process, in order to produce a finite photocurrent, while quasi-metallic nanotubes do not. The quasi-metallic nanotubes have much lower exciton binding energies (∼50 meV) as well as a continuum of electronic states to decay into and, therefore, do not require the absorption of a phonon in order to dissociate, making it much easier for these excitons to produce a photocurrent. We performed detailed simulations of the band energies in quasi-metallic and semiconducting nanotube devices in order to obtain the electric field profiles along the lengths of the nanotubes. These simulations predict maximum built-in electric field strengths of 2.3 V/µm for semiconducting and 0.032-0.22 V/µm for quasi-metallic nanotubes under the applied gate voltages used in this study.

SELECTION OF CITATIONS
SEARCH DETAIL
...