Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Microbiol Resour Announc ; 13(6): e0128423, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38700350

ABSTRACT

We announce the complete genome of Klebsiella aerogenes strain CH7, isolated from a vermicompost sample. A total of 9.14131 million high-quality reads comprised 96 contigs with 5,273 genes and 5,038 protein-coding genes.

2.
J Biol Chem ; 300(4): 107162, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484800

ABSTRACT

Kinetoplastid parasites are "living bridges" in the evolution from prokaryotes to higher eukaryotes. The near-intronless genome of the kinetoplastid Leishmania exhibits polycistronic transcription which can facilitate R-loop formation. Therefore, to prevent such DNA-RNA hybrids, Leishmania has retained prokaryotic-like DNA Topoisomerase IA (LdTOPIA) in the course of evolution. LdTOPIA is an essential enzyme that is expressed ubiquitously and is adapted for the compartmentalized eukaryotic form in harboring functional bipartite nuclear localization signals. Although exhibiting greater homology to mycobacterial TOPIA, LdTOPIA could functionally complement the growth lethality of Escherichia coli TOPIA null GyrB ts strain at non-permissive temperatures. Purified LdTOPIA exhibits Mg2+-dependent relaxation of only negatively supercoiled DNA and preference towards single-stranded DNA substrates. LdTOPIA prevents nuclear R-loops as conditional LdTOPIA downregulated parasites exhibit R-loop formation and thereby parasite killing. The clinically used tricyclic antidepressant, norclomipramine could specifically inhibit LdTOPIA and lead to R-loop formation and parasite elimination. This comprehensive study therefore paves an avenue for drug repurposing against Leishmania.


Subject(s)
DNA Topoisomerases, Type I , Leishmania , Protozoan Proteins , R-Loop Structures , Animals , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type I/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Leishmania/enzymology , Leishmania/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/chemistry , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology
3.
J Biomol Struct Dyn ; : 1-14, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419322

ABSTRACT

As a leading contender in the study of luminescence, nanoluciferase has recently attracted attention and proven effective in a wide variety of research areas. Although numerous attempts have been made to improve activity, there has yet to be a thorough exploration of further possibilities to improve thermostability. In this study, protein engineering in tandem with molecular dynamics simulation at various temperatures (300 K, 400 K, 450 K and 500 K) was used to improve our understanding of nanoluciferase dynamics and identification of factors that could significantly enhance the thermostability. Based on these, three novel mutations have been narrowed down, which were hypothesised to improve thermostability. Root mean square deviation and root mean square fluctuation studies confirmed higher stability of mutant at high temperature. Solvent-accessible surface area and protein unfolding studies revealed a decreased tendency of mutant to unfold at higher temperatures. Further free energy landscape and principal component analysis was adapted to get deeper insights into the thermodynamic and structural behavior of these proteins at elevated temperature. Thus, this study provides a deeper insight into the dynamic factors for thermostability and introduces a novel, enhanced nanoluciferase candidate with potential use in industry.Communicated by Ramaswamy H. Sarma.

4.
J Am Heart Assoc ; 12(12): e022352, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37318009

ABSTRACT

Background Identifying new therapeutic targets for preventing the myocardial ischemia-reperfusion injury would have profound implications in cardiovascular medicine. Myocardial ischemia-reperfusion injury remains a major clinical burden in patients with coronary artery disease. Methods and Results We studied several key mechanistic pathways known to mediate cardioprotection in myocardial ischemia-reperfusion in 2 independent genetic models with reduced cardiac phosphoinositide 3-kinase-α (PI3Kα) activity. P3Kα-deficient genetic models (PI3KαDN and PI3Kα-Mer-Cre-Mer) showed profound resistance to myocardial ischemia-reperfusion injury. In an ex vivo reperfusion protocol, PI3Kα-deficient hearts had an 80% recovery of function compared with ≈10% recovery in the wild-type. Using an in vivo reperfusion protocol, PI3Kα-deficient hearts showed a 40% reduction in infarct size compared with wild-type hearts. Lack of PI3Kα increased late Na+ current, generating an influx of Na+, facilitating the lowering of mitochondrial Ca2+, thereby maintaining mitochondrial membrane potential and oxidative phosphorylation. Consistent with these functional differences, mitochondrial structure in PI3Kα-deficient hearts was preserved following ischemia-reperfusion injury. Computer modeling predicted that PIP3, the product of PI3Kα action, can interact with the murine and human NaV1.5 channels binding to the hydrophobic pocket below the selectivity filter and occluding the channel. Conclusions Loss of PI3Kα protects from global ischemic-reperfusion injury linked to improved mitochondrial structure and function associated with increased late Na+ current. Our results strongly support enhancement of mitochondrial function as a therapeutic strategy to minimize ischemia-reperfusion injury.


Subject(s)
Coronary Artery Disease , Myocardial Ischemia , Myocardial Reperfusion Injury , Humans , Mice , Animals , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Myocardial Ischemia/drug therapy , Mitochondria/metabolism , Coronary Artery Disease/metabolism , Mitochondria, Heart/metabolism
5.
Bioresour Technol ; 379: 129045, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37044152

ABSTRACT

Lignin, a highly heterogeneous polymer of lignocellulosic biomass, is intricately associated with cellulose and hemicellulose, responsible for its strength and rigidity. Lignin decomposition is carried out through certain enzymes derived from microorganisms to promote the hydrolysis of lignin. Analyzing multi-omics data helps to emphasize the probable value of fungal-produced enzymes to degrade the lignocellulosic material, which provides them an advantage in their ecological niches. This review focuses on lignin biodegrading microorganisms and associated ligninolytic enzymes, including lignin peroxidase, manganese peroxidase, versatile peroxidase, laccase, and dye-decolorizing peroxidase. Further, enzymatic catalysis, lignin biodegradation mechanisms, vital factors responsible for lignin modification and degradation, and the design and selection of practical metabolic pathways are also discussed. Highlights were made on metabolic pathway engineering, different aspects of omics analyses, and its scope and applications to ligninase enzymes. Finally, the advantages and essential steps of successfully applying metabolic engineering and its path forward have been addressed.


Subject(s)
Lignin , Metabolic Engineering , Lignin/metabolism , Peroxidases/genetics , Peroxidases/metabolism , Laccase/genetics , Laccase/metabolism , Metabolic Networks and Pathways
6.
ACS Bio Med Chem Au ; 3(2): 174-188, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37101813

ABSTRACT

ß-lactamase production with vast catalytic divergence in the pathogenic strain limits the antibiotic spectrum in the clinical environment. Class A carbapenemase shares significant sequence similarities, structural features, and common catalytic mechanisms although their resistance spectrum differs from class A ß-lactamase in carbapenem and monobactam hydrolysis. In other words, it limited the antibiotic treatment option against infection, causing carbapenemase-producing superbugs. Ftu-1 is a class A ß-lactamase expressed by the Francisella tularensis strain, a potent causative organism of tularemia. The chromosomally encoded class A ß-lactamase shares two conserved cysteine residues, a common characteristic of a carbapenemase, and a distinctive class in the phylogenetic tree. Complete biochemical and biophysical characterization of the enzyme was performed to understand the overall stability and environmental requirements to perform optimally. To comprehend the enzyme-drug interaction and its profile toward various chemistries of ß-lactam and ß-lactamase inhibitors, comprehensive kinetic and thermodynamic analyses were conducted using various ß-lactam drugs. The dynamic property of Ftu-1 ß-lactamase was also predicted using molecular dynamics (MD) simulation to compare its loop flexibility and ligand binding with other related class A ß-lactamases. Overall, this study fosters a comprehensive understanding of Ftu-1, proposed to be an intermediate class by characterizing its kinetic profiling, stability by biochemical and biophysical methodologies, and susceptibility profiling. This understanding would be beneficial for the design of new-generation therapeutics.

7.
mSystems ; 7(4): e0021722, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35735748

ABSTRACT

Resistance-nodulation-division-type efflux system AdeABC plays an important role in carbapenem resistance among Acinetobacter baumannii. However, a knowledge gap is observed regarding the role of its regulator AdeRS in carbapenem-resistant A. baumannii (CRAB). This study effectively combines microbiological analysis with an in-silico structural approach to understand the contribution of AdeRS among CRAB (n = 38). Additionally, molecular docking was performed for the first time to study the interaction of FDA-approved carbapenems and pump inhibitor PAßN with the open and closed structure of AdeB at the three binding sites (periplasmic, proximal, distal). It was observed that open conformation of AdeB facilitates the binding of carbapenems and PAßN at entrance and proximal sites compared to the closed conformation. PAßN was found to block carbapenem interacting residues in AdeB, establishing its role as a competitive inhibitor of AdeB substrates. Overexpression of AdeABC was detected by q-RT-PCR among 29% of CRABs, and several mutations within AdeS (GLY186VAL, SER188PHE, GLU121LYS, VAL255ILE) and AdeR (VAL120ILE, ALA136VAL) were detected by sequencing. The sequence and structure-based study of AdeRS was performed to analyze the probable effect of these mutations on regulation of the two-component system (TCS), especially, utilizing its three-dimensional structure. AdeS mutations inhibited the transfer of a phosphate group to AdeR, preventing the binding of AdeR to the intercistronic region, leading to overexpression of AdeABC. The elucidation of the role of mutations in AdeRS improves our understanding of TCS-based regulation. Identification of the key residues of AdeB interacting with carbapenems and PAßN may help in future designing of novel inhibitors. IMPORTANCE AdeABC is an important efflux pump in A. baumannii that plays a role in resistance toward different antibiotics including the "last resort" antibiotic, carbapenem. This pump is regulated by a two-component system, AdeRS. To understand the binding of carbapenems with AdeABC and pump inhibition by PAßN, we analyzed for the first time the possible atomic level interactions of carbapenems and PAßN with AdeB. In the current study, AdeRS-associated novel mutations in clinical A. baumannii are reported for the first time, and a sequence-structure based in-silico approach was used to interpret their role in AdeABC overexpression, leading to carbapenem resistance. None of the previous studies had undertaken both these aspects simultaneously. This study analyzes the open and closed conformation of AdeB, their binding with carbapenems, and key residues involved in it. This helps in visualizing the plausible atomic level causes of pump inhibition driving the discovery of novel inhibitors.


Subject(s)
Acinetobacter baumannii , Carbapenems , Carbapenems/pharmacology , Acinetobacter baumannii/genetics , Molecular Docking Simulation , Membrane Transport Proteins/genetics , Bacterial Proteins/genetics , Anti-Bacterial Agents/pharmacology , Mutation
10.
ChemMedChem ; 17(8): e202100782, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35112482

ABSTRACT

The recent emergence of pandemic of coronavirus (COVID-19) caused by SARS-CoV-2 has raised significant global health concerns. More importantly, there is no specific therapeutics currently available to combat against this deadly infection. The enzyme 3-chymotrypsin-like cysteine protease (3CLpro) is known to be essential for viral life cycle as it controls the coronavirus replication. 3CLpro could be a potential drug target as established before in the case of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). In the current study, we wanted to explore the potential of fused flavonoids as 3CLpro inhibitors. Fused flavonoids (5a,10a-dihydro-11H-benzofuro[3,2-b]chromene) are unexplored for their potential bioactivities due to their low natural occurrences. Their synthetic congeners are also rare due to unavailability of general synthetic methodology. Here we designed a simple strategy to synthesize 5a,10a-dihydro-11H-benzofuro[3,2-b]chromene skeleton and it's four novel derivatives. Our structural bioinformatics study clearly shows excellent potential of the synthesized compounds in comparison to experimentally validated inhibitor N3. Moreover, in-silico ADMET study displays excellent druggability and extremely low level of toxicity of the synthesized molecules. Further, for better understanding, the molecular dynamic approach was implemented to study the change in dynamicity after the compounds bind to the protein. A detailed investigation through clustering analysis and distance calculation gave us sound comprehensive data about their molecular interaction. In summary, we anticipate that the currently synthesized molecules could not only be a potential set of inhibitors against 3CLpro but also the insights acquired from the current study would be instrumental in further developing novel natural flavonoid based anti-COVID therapeutic spectrums.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Benzopyrans/pharmacology , Benzopyrans/therapeutic use , Flavonoids/chemistry , Flavonoids/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry
11.
J Biomol Struct Dyn ; 40(24): 14013-14026, 2022.
Article in English | MEDLINE | ID: mdl-34873989

ABSTRACT

The innate immune system has an important role in developing the initial resistance to virus infection, and the ability of oligoadenylate synthetase to overcome viral evasion and enhance innate immunity is already established in humans. In the present study, we have tried to explore the molecular and structural variations present in Sahiwal (indigenous) and crossbred (Frieswal) cattle to identify the molecular mechanism of action of OAS1 gene in activation of innate immune response. The significant changes in structural alignment in terms of orientation of loops, shortening of ß-sheets and formation of 3-10 α-helix was noticed in Sahiwal and Frieswal cattle. Further, it has been observed that OAS1 from Sahiwal had better binding with APC and DTP ligand than Frieswal OAS1. A remarkable change was seen in orientation at the nucleoside base region of both the ligands, which are bound with OAS1 protein from Frieswal and Sahiwal cattle. The Molecular Dynamic study of apo and ligand complex structures was provided more insight towards the stability of OAS1 from both cattle. This analysis displayed that the Sahiwal cattle protein has more steady nature throughout the simulation and has better binding towards Frieswal in terms of APC and DTP binding. Thus, OAS1 protein is the potential target for explaining the innate immune response in Sahiwal than Frieswal.Communicated by Ramaswamy H. Sarma.


Subject(s)
Adenine Nucleotides , Ligases , Humans , Cattle , Animals , Ligands , Computer Simulation
12.
J Agric Food Chem ; 69(49): 14995-15004, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34855377

ABSTRACT

Angiotensin converting enzyme-I (ACE-I) is a key therapeutic target of the renin-angiotensin-aldosterone system (RAAS), the central pathway of blood pressure regulation. Food-derived peptides with ACE-I inhibitory activities are receiving significant research attention. However, identification of ACE-I inhibitory peptides from different food proteins is a labor-intensive, lengthy, and expensive process. For successful identification of potential ACE-I inhibitory peptides from food sources, a machine learning and structural bioinformatics-based web server has been developed and reported in this study. The web server can take input in the FASTA format or through UniProt ID to perform the in silico gastrointestinal digestion and then screen the resulting peptides for ACE-I inhibitory activity. This unique platform provides elaborated structural and functional features of the active peptides and their interaction with ACE-I. Thus, it can potentially enhance the efficacy and reduce the time and cost in identifying and characterizing novel ACE-I inhibitory peptides from food proteins. URL: http://hazralab.iitr.ac.in/ahpp/index.php.


Subject(s)
Antihypertensive Agents , Peptidyl-Dipeptidase A , Angiotensin-Converting Enzyme Inhibitors , Angiotensins , Machine Learning , Peptides
13.
Front Microbiol ; 12: 710291, 2021.
Article in English | MEDLINE | ID: mdl-34690953

ABSTRACT

The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis calls for an immediate search for novel treatment strategies. Recently, BlaC, the principal beta-lactamase of Mycobacterium tuberculosis, was recognized as a potential therapeutic target. BlaC belongs to Ambler class A, which is generally susceptible to the beta-lactamase inhibitors currently used in clinics: tazobactam, sulbactam, and clavulanate. Alterations at Ser130 in conserved SDN loop confer resistance to mechanism-based inhibitors (MBIs) commonly observed in various clinical isolates. The absence of clinical evidence of S130G conversion in M. tuberculosis draws our attention to build laboratory mutants of S130G and S130A of BlaC. The study involving steady state, inhibition kinetics, and fluorescence microscopy shows the emergence of resistance against MBIs to the mutants expressing S130G and S130A. To understand the molecular reasoning behind the unavailability of such mutation in real life, we have used circular dichroism (CD) spectroscopy, differential scanning calorimetry (DSC), molecular dynamics (MD) simulation, and stability-based enzyme activity to compare the stability and dynamic behaviors of native and S130G/A mutant form of BlaC. A significant decrease in melting temperature (BlaC T M 60°C, S130A T M 50°C, and S130G T M 45°C), kinetic instability at higher temperature, and comparative dynamic instability correlate the fact that resistance to beta-lactam/beta-lactamase inhibitor combinations will likely not arise from the structural alteration of BlaC, therefore establishing confidence that this therapeutic modality can be potentially applied as a part of a successful treatment regimen against M. tuberculosis.

14.
Enzyme Microb Technol ; 148: 109806, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34116765

ABSTRACT

Functionalizing C-H bond poses one of the most significant challenges for chemists providing them with very few substrate-specific synthetic routes. Despite being incredibly plastic in their enzymatic ability, they are confined with deficient enzymatic action and limited explicitness of the substrates. In this study, we have endeavored to characterize novel cytochrome P450 from Bacillus aryabhattai (CYP-BA), a homolog of CYP P450-BM3, by taking interdisciplinary approaches. We conducted structure and sequence comparison to understand the conservation pattern for active site residues, conserved fold, evolutionary relationships among others. Molecular dynamics simulations were performed to understand the dynamic nature and interaction with the substrates. CYP-BA was successfully cloned, purified, and characterized. The enzyme's stability toward various physicochemical parameters was evaluated by UV-vis spectroscopy and Circular Dichroism (CD) spectroscopy. Various saturated fatty acids being the natural cytochrome P450 substrates were evaluated as catalytic efficiency of substrate oxidation by CYP-BA. The binding affinity of these natural substrates was monitored against CYP-BA by isothermal titration calorimetry (ITC). The catalytic performance of CYP-BA was satisfactory enough to proceed to the next step, that is, engineering to expand the substrate range to include polycyclic aromatic hydrocarbons (PAH). This is the first evidence of cloning, purifying and characterizing a novel homolog of CYP-BM3 to enable a better understanding of this novel biocatalyst and to provide a platform toward expanding its catalytic process through enzyme engineering.


Subject(s)
Bacillus , NADPH-Ferrihemoprotein Reductase , Bacillus/genetics , Bacterial Proteins/genetics , Cytochrome P-450 Enzyme System/genetics
15.
Int J Biol Macromol ; 177: 337-350, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33582216

ABSTRACT

This study evaluated the inhibitory potential of various beta-lactamase inhibitors such as mechanism-based inhibitors (MBIs), carbapenems, monobactam, and non-beta-lactam inhibitors against Bla1, a class-A beta-lactamase encoded by Bacillus anthracis. The binding potential of different inhibitors was estimated using competitive kinetic assay, isothermal titration calorimetry, and Biolayer interferometry. We observed that tazobactam has better inhibition among other MBIs with a characteristics inhibition dissociation constant of 0.51 ± 0.13 µM. Avibactam was also identified as good inhibitor with an inhibition efficiency of 0.6 ± 0.04 µM. All the MBIs (KD = 1.90E-04 M, 2.05E-05 M, 3.55E-04 M for clavulanate, sulbactam and tazobactam) showed significantly better binding potential than carbapenems (KD = 1.02E-03 M, 2.74E-03 M, 1.24E-03 M for ertapenem, imipenem and biapenem respectively). Molecular dynamics simulations were carried out using Bla1-inhibitor complexes to understand the dynamics and stability. The minimum inhibitory concentration (MIC) was carried out by taking various substrates and inhibitors, and later it was followed by cell viability assay. Together, our study helps develop a proper understanding of Bla1 beta-lactamase and its interaction with inhibitory molecules. This study would facilitate comprehending the catalytic divergence of beta-lactamases and the newly emergent resistant strains, focusing on the new generation of therapeutics being less prone to antimicrobial resistance.


Subject(s)
Azabicyclo Compounds/chemistry , Bacillus anthracis/enzymology , Bacterial Proteins , beta-Lactam Resistance , beta-Lactamase Inhibitors/chemistry , beta-Lactamases/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry
16.
J Biomed Mater Res B Appl Biomater ; 109(8): 1156-1176, 2021 08.
Article in English | MEDLINE | ID: mdl-33319466

ABSTRACT

Vitreous or vitreous humor is a complex transparent gel that fills the space between the lens and retina of an eye and acts as a transparent medium that allows light to pass through it to reach the photoreceptor layer (retina) of the eye. The vitreous humor is removed in ocular surgery (vitrectomy) for pathologies like retinal detachment, macular hole, diabetes-related vitreous hemorrhage detachment, and ocular trauma. Since the vitreous is not actively regenerated or replenished, there is a need for a vitreous substitute to fill the vitreous cavity to provide a temporary or permanent tamponade to the retina following some vitreoretinal surgeries. An ideal vitreous substitute could probably be left inside the eye forever. The vitreous humor is transparent, biocompatible, viscoelastic and highly hydrophilic; polymeric hydrogels with these properties can be a potential candidate to be used as vitreous substitutes. To meet the tremendous demand for the vitreous substitute, many scientists all over the world have developed various kinds of vitreous substitutes or tamponade agent. Vitreous substitutes, whatsoever developed till date, are associated with several advantages and disadvantages, and there is no ideal vitreous substitute available till date. This review highlights the polymer-based vitreous substitutes developed so far, along with their advantages and limitations. The gas-based and oil-based substitutes have also been discussed but very briefly.


Subject(s)
Biocompatible Materials/therapeutic use , Eye Diseases/surgery , Hydrogels/therapeutic use , Vitrectomy , Vitreous Body/surgery , Biocompatible Materials/chemistry , Humans , Hydrogels/chemistry
17.
J Biomol Struct Dyn ; 39(2): 635-649, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32048568

ABSTRACT

Functional foods are emerging as essential healthy nutritional component due to their abundant wellbeing benefits. Especially the food-derived peptides are considered as key components for playing their biologically active roles. One such robust therapeutics that already exploited with food peptides that help treating high blood pressure via targeting Angiotensin-Converting Enzyme (ACE). This in silico study demonstrated the inhibitory potential of antihypertensive peptides derived from food sources. This study involves an intensive structure-based analysis of enzyme-peptide interactions using Molecular Dynamics (MD) simulations. Interestingly, this study will help us to get deeper understanding on how food peptides achieve successful inhibition of ACE. In this study, the peptide-enzyme complexes revealed two binding pockets, A and B, on either side of the active site Zn atom. Pocket B has a smaller binding site volume than pocket A, comprised of ß-sheets and the active site opening cleft. The interface of the binding sites showed that the enzyme structure was negative to neutral charge, and the peptide structure was positive to neutral charge. The dynamics of complex structures of seven highly potential peptides were performed for 20 ns each at 300 K. Comparative analysis of RMSD, RMSF and binding energies show the enzyme-peptide complexes and the overall stability of apo-enzyme. Importantly, two peptides AFKAWAVAR and IWHHTF showed the highest variation in their RMSD as compared to the apo-enzyme. This study will further be useful for the assessment of the characteristics to predict novel inhibitory peptides that can be generated from food proteins.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antihypertensive Agents , Hypertension , Angiotensin-Converting Enzyme Inhibitors , Humans , Molecular Docking Simulation , Peptides , Peptidyl-Dipeptidase A
18.
Biophys Chem ; 268: 106493, 2021 01.
Article in English | MEDLINE | ID: mdl-33152620

ABSTRACT

The bacterial secondary messenger bis-(3',5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) has been implicated in the pathogenesis of Vibrio cholerae, due to its significant role in regulating the virulence, biofilm formation and motility of the host organism. The VC0395_0300 protein from V. cholerae, possessing a GGEEF sequence has been established as a diguanylate cyclase (DGC) capable of catalyzing the conversion of two GTP molecules to form cyclic-di-GMP. This in turn, plays a crucial role in allowing the organism to adopt a dual lifestyle, thriving both in human and aquatic systems. The difficulty in procuring sufficient amounts of homogenous soluble protein for structural assessment of the GGDEF domain in VC0395_0300 and the lack of soluble protein yield, prompted the truncation into smaller constructs (Sebox31 and Sebox32) carrying the GGDEF domain. The truncates retained their diguanylate cyclase activity comparable to the wild type, and were able to form biofilms as well. Fluorescence and circular dichroism spectroscopy measurements revealed that the basic structural elements do not show significant changes in the truncated proteins as compared to the full-length. This has also been confirmed using homology modeling and molecular docking of the wild type and truncates. This led us to conclude that the truncated constructs retain their activity in spite of the deletions in the N terminal region. This is supportive of the fact that DGC activity in GGDEF proteins is predominantly dependent on the presence of the conserved GGD(/E)EF domain and its interaction with GTP.


Subject(s)
Bacterial Proteins/genetics , Escherichia coli Proteins/genetics , Phosphorus-Oxygen Lyases/genetics , Vibrio cholerae/genetics , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cholera/microbiology , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Guanosine Triphosphate/metabolism , Humans , Models, Molecular , Phosphorus-Oxygen Lyases/chemistry , Phosphorus-Oxygen Lyases/metabolism , Vibrio cholerae/chemistry , Vibrio cholerae/metabolism
19.
Heliyon ; 6(9): e05053, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33015393

ABSTRACT

Non-enzymatic glycation of proteins is believed to be the root cause of high dietary sugar associated pathophysiological maladies. We investigated the structural changes in protein during progression of glycation using ribosylated Bovine Serum Albumin (BSA). Non enzymatic attachment of about 45 ribose molecules to BSA resulted in gradual reduction of hydrophobicity and aggregation as indicated by red-shifted tryptophan fluorescence, reduced ANS binding and lower anisotropy of FITC-conjugated protein. Parallely, there was a significant decrease of alpha helicity as revealed by Circular Dichroism (CD) and Fourier transformed-Infra Red (FT-IR) spectra. The glycated proteins assumed compact globular structures with enhanced Thioflavin-T binding resembling amyloids. The gross structural transition affected by ribosylation led to enhanced thermostability as indicated by melting temperature and Transmission Electron Microscopy. At a later stage of glycation, the glycated proteins developed non-specific aggregates with increase in size and loss of amyloidogenic behaviour. A parallel non-glycated control incubated under similar conditions indicated that amyloid formation and associated changes were specific for ribosylation and not driven by thermal denaturation due to incubation at 37 °C. Functionality of the glycated protein was significantly altered as probed by Isothermal Titration Calorimetry using polyphenols as substrates. The studies demonstrated that glycation driven globular amyloids form and persist as transient intermediates during formation of misfolded glycated adducts. To the best of our knowledge, the present study is the first systematic attempt to understand glycation associated changes in a protein and provides important insights towards designing therapeutics for arresting dietary sugar induced amyloid formation.

20.
Biotechnol Adv ; 44: 107616, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32871186

ABSTRACT

History of metabolism originates with yeast making bread. In fact, study based on "Yeast" was so crucial in the development of the field of biochemistry that the word "enzyme" is derived from the Greek word meaning leavened (yeast). Yeast has always been a point of interest as a eukaryotic model system to demonstrate the metabolites and their function. In recent times their metabolites are widely studied to predict their role in various pathways. Many traditional and analytical techniques have been employed, but its study through metabolomics is of recent interest in research. The present review focuses on details about yeast metabolomics based on preliminary research on various analytical techniques along with computational approaches. The review also aimed to highlight machine learning and various inceptions of yeast metabolomics.


Subject(s)
Metabolomics , Saccharomyces cerevisiae , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...