Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Evol Med Public Health ; 2016(1): 299-311, 2016.
Article in English | MEDLINE | ID: mdl-27535084

ABSTRACT

The immune system is a key component of malignant cell control and it is also involved in the elimination of pathogens that threaten the host. Despite our body is permanently exposed to a myriad of pathogens, the interference of such infections with the immune responses against cancer has been poorly investigated. Through a mathematical model, we show that the frequency, the duration and the action (positive or negative) of immune challenges may significantly impact tumor proliferation. First, we observe that a long immunosuppressive challenge increases accumulation of cancerous cells only if it occurs 14 years after the beginning of immunosenescence. However, short immune challenges result in an even greater accumulation of cancerous cells for the same total duration of immunosuppression. Finally, we show that short challenges of immune activation could lead to a slightly decrease in cancerous cell accumulation compared to a long one. Our results predict that frequent and acute immune challenges could have a different and in some extent higher impact on cancer risk than persistent ones even they have been much less studied in cancer epidemiology. These results are discussed regarding the existing empirical evidences and we suggest potential novel indirect role of infectious diseases on cancer incidence which should be investigated to improve prevention strategies against cancer.

2.
Evol Appl ; 6(1): 109-16, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23396800

ABSTRACT

If the occurrence of cancer is the result of a random lottery among cells, then body mass, a surrogate for cells number, should predict cancer incidence. Despite some support in humans, this assertion does not hold over the range of different natural animal species where cancer incidence is known. Explaining the so-called 'Peto's paradox' is likely to increase our understanding of how cancer defense mechanisms are shaped by natural selection. Here, we study how body mass may affect the evolutionary dynamics of tumor suppressor gene (TSG) inactivation and oncogene activation in natural animal species. We show that the rate of TSG inactivation should evolve to lower values along a gradient of body mass in a nonlinear manner, having a threshold beyond which benefits to adaptive traits cannot overcome their costs. We also show that oncogenes may be frequently activated within populations of large organisms. We then propose experimental settings that can be employed to identify protection mechanisms against cancer. We finally highlight fundamental species traits that natural selection should favor against carcinogenesis. We conclude on the necessity of comparing genomes between populations of a single species or genomes between species to better understand how evolution has molded protective mechanisms against cancer development and associated mortality.

3.
Acta Biotheor ; 56(1-2): 75-86, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18273682

ABSTRACT

We consider a two-patch epidemiological system where individuals can move from one patch to another, and local interactions between the individuals within a patch are governed by the classical SIRS model. When the time-scale associated with migration is much smaller than the time-scale associated with infection, aggregation methods can be used to simplify the initial complete model formulated as a system of ordinary differential equations. Analysis of the aggregated model then shows that the two-patch basic reproduction rate is smaller than the 1 patch one. We extend this result to a linear chain of P patches (P > 2). These results are illustrated by some examples for which numerical integration of the system of ordinary differential equations is performed. Simulations of an individual based model implemented with a multi-agent system are also carried out.


Subject(s)
Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...