Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biofactors ; 49(1): 173-184, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36070513

ABSTRACT

Diabetic encephalopathy (DE) is a common complication of type 2 diabetes (T2D), especially in those patients with long T2D history. Persistent high glucose (HG) stimulation leads to neuron damage and manifests like Alzheimer's disease's pathological features such as neurofilament tangle. However, the precise mechanism of high-glucose-induced tau hyperphosphorylation is not fully revealed. We here gave evidence that Disrupted in schizophrenia 1 protein (DISC1) could interact with glycogen synthase kinase 3ß (GSK3ß) and inhibit its activity to prevent tau hyperphosphorylation. By using DB/DB mice as animal model and HG-treated N2a cell as cell model, we found that DISC1 was downregulated both in vivo and in vitro, complicated with Tau hyperphosphorylation and GSK3ß activation. Further, we identified DISC1 interacted with GSK3ß by its 198th-237th amino acid residues. Overexpression of full length DISC1 but not mutated DISC1 lacking this domain could prevent HG induced tau hyperphosphorylation. Taken together, our work revealed DISC1 could be an important negative modulators of tau phosphorylation, and suggested that preservation of DISC1 could prevent HG induced neuron damage.


Subject(s)
Diabetes Mellitus, Type 2 , tau Proteins , Mice , Animals , tau Proteins/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Glucose , Phosphorylation , Nerve Tissue Proteins/metabolism
2.
Am J Chin Med ; 50(4): 1133-1153, 2022.
Article in English | MEDLINE | ID: mdl-35543160

ABSTRACT

Salidroside, an active ingredient in Rhodiola rosea, has potent protective activity against cerebral ischemia. However, the mechanisms underlying its pharmacological actions are poorly understood. In this study, we employed a mouse middle cerebral artery occlusion (MCAO) and cellular oxygen and glucose deprivation (OGD) models to test the hypothesis that salidroside may restore mitochondrial quality control in neurons by modulating the relevant signaling. The results indicated that salidroside mitigated almost 40% the ischemia-induced brain infarct volumes in mice and the OGD-decreased viability of neurons to ameliorate the mitochondrial functions. Furthermore, salidroside treatment alleviated the OGD- or ischemia-induced imbalance of mitochondrial fission and fusion, mitophagy and promoted mitochondrial biogenesis in neurons by attenuating the AMPK activity. Moreover, salidroside alleviated 50% the OGD-promoted mitochondrial calcium fluorescence intensity and 5% mitochondria-associated membrane (MAM) area by down-regulating GRP75 expression independent of the AMPK signaling. Finally, similar findings were achieved in primary mouse neurons. Collectively, these data indicate that salidroside effectively restores the mitochondria dynamics, facilitates mitochondrial biogenesis by attenuating the AMPK signaling, and maintains calcium homeostasis in neurons independent of the AMPK activity.


Subject(s)
AMP-Activated Protein Kinases , Brain Ischemia , AMP-Activated Protein Kinases/metabolism , Animals , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Calcium/metabolism , Glucose/metabolism , Glucosides , Ischemia/metabolism , Mice , Mitochondria/metabolism , Neurons , Phenols
3.
Mol Med Rep ; 25(5)2022 May.
Article in English | MEDLINE | ID: mdl-35293600

ABSTRACT

Ischemic stroke is a life­threatening disease, which is closely related to neuron damage during ischemia. Mitochondrial dysfunction is essentially involved in the pathophysiological process of ischemic stroke. Mitochondrial calcium overload contributes to the development of mitochondrial dysfunction. However, the underlying mechanisms of mitochondrial calcium overload are far from being fully revealed. In the present study, middle cerebral artery obstruction (MCAO) was performed in vivo and oxygen and glucose deprivation (OGD) in vitro. The results indicated that both MCAO and OGD induced significant mitochondrial dysfunction in vivo and in vitro. The mitochondria became fragmented under hypoxia conditions, accompanied with upregulation of the heat shock protein 75 kDa glucose­regulated protein (GRP75). Inhibition of GRP75 was able to effectively ameliorate mitochondrial calcium overload and preserve mitochondrial function, which may provide evidence for further translational studies of ischemic diseases.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Brain Ischemia/metabolism , HSP70 Heat-Shock Proteins/metabolism , Humans , Membrane Proteins , Mitochondria/metabolism , Neurons/metabolism , Stroke/metabolism
4.
Front Pharmacol ; 12: 640758, 2021.
Article in English | MEDLINE | ID: mdl-34349640

ABSTRACT

Alzheimer's disease (AD) is tightly related to endoplasmic reticulum stress (ER stress), which aggravates two dominant pathological manifestations of AD: senile plaques and neurofibrillary tangles. Berberine is widely applied in the clinical treatment of many diseases and is reported to have anti-AD effects. In the present study, berberine was shown to ameliorate ER stress and cognitive impairment in APP/PS1 mice. We found ER stress plays a role as a central hub for signal transduction, which was evidenced by the hyperactivation of glycogen synthase kinase 3ß (GSK3ß) to phosphorylate tau and the activation of PRKR-like endoplasmic reticulum kinase (PERK) subsequently to phosphorylate eukaryotic translation initiation factor-2 α (eIF2α). Also, eIF2α has regulated the expression of beta-site APP cleaving enzyme-1 (BACE1), which cleaves APP into pro-oligomerized amyloid beta 42 (Aß42), the main component of senile plaques, proven by using siRNA targeting at eIF2α. Mechanically, berberine can reduce GSK3ß activity, contributing to the downregulation of tau phosphorylation. Berberine also suppressed Aß42 production via inhibiting the PERK/eIF2α/BACE1 signaling pathway. Taken together, these findings indicated that berberine had the potential to ameliorate two major pathological manifestations of AD mainly by suppressing ER stress. Our work provided knowledge on the pharmacological intervention of AD and the possible targets for future drug development.

5.
Curr Med Sci ; 41(5): 936-943, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34181207

ABSTRACT

Salidroside is the active ingredient extracted from Rhodiola rosea, and has been reported to show protective effects in cerebral ischemia, but the exact mechanisms of neuronal protective effects are still unrevealed. In this study, the protective effects of salidroside (1 µmol/L) in ameliorating neuronal injuries induced by oxygen-glucose deprivation (OGD), which is a classical model of cerebral ischemia, were clarified. The results showed that after 8 h of OGD, the mouse hippocampal neuronal cell line HT22 cells showed increased cell death, accompanied with mitochondrial fragmentation and augmented mitophagy. However, the cell viability of HT22 cells showed significant restoration after salidroside treatment. Mitochondrial morphology and mitochondrial function were effectively preserved by salidroside treatment. The protective effects of salidroside were further related to the prevention of mitochondrial over-fission. The results showed that mTOR could be recruited to the mitochondria after salidroside treatment, which might be responsible for inhibiting excessive mitophagy caused by OGD. Thus, salidroside was shown to play a protective role in reducing neuronal death under OGD by safeguarding mitochondrial function, which may provide evidence for further translational studies of salidroside in ischemic diseases.


Subject(s)
Glucose/metabolism , Glucosides/pharmacology , Mitochondria/metabolism , Neurons/cytology , Neuroprotective Agents/pharmacology , Oxygen/metabolism , Phenols/pharmacology , Animals , Brain Ischemia , Cell Line , Cell Survival , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria/drug effects , Mitophagy/drug effects , Neurons/drug effects , Neurons/metabolism , Reactive Oxygen Species/metabolism
6.
Front Pharmacol ; 9: 1121, 2018.
Article in English | MEDLINE | ID: mdl-30337876

ABSTRACT

Background: Type II diabetes (T2D)-induced cardiomyocyte hypertrophy is closely linked to the impairment of mitochondrial function. Berberine has been shown to be a promising effect for hypoglycemia in T2D models. High glucose-induced cardiomyocyte hypertrophy in vitro has been reported. The present study investigated the protective effect and the underlying mechanism of berberine on high glucose-induced H9C2 cell line. Methods: High glucose-induced H9C2 cell line was used to mimic the hyperglycemia resulting in cardiomyocyte hypertrophy. Berberine was used to rescue in this model and explore the mechanism in it. Confocal microscopy, immunofluorescence, RT-PCR, and western blot analysis were performed to evaluate the protective effects of berberine in high glucose-induced H9C2 cell line. Results: Berberine dramatically alleviated hypertrophy of H9C2 cell line and significantly ameliorated mitochondrial function by rectifying the imbalance of fusion and fission in mitochondrial dynamics. Furthermore, berberine further promoted mitogenesis and cleared the damaged mitochondria via mitophagy. In addition, berberine also restored autophagic flux in high glucose-induced cardiomyocyte injury via AMPK signaling pathway activation. Conclusion: Berberine ameliorates high glucose-induced cardiomyocyte injury via AMPK signaling pathway activation to stimulate mitochondrial biogenesis and restore autophagicflux in H9C2 cell line.

7.
J Alzheimers Dis ; 65(4): 1385-1400, 2018.
Article in English | MEDLINE | ID: mdl-30175975

ABSTRACT

BACKGROUND: Axonopathy is closely linked to the development of diabetic encephalopathy induced by type II diabetes (T2D). Berberine has been shown to cross the blood-brain barrier and holds promising effect for neuronal damage in diabetes. OBJECTIVE: The present study investigated the protective effect and the underlying mechanism of berberine on neuronal axonopathy in both in vitro and in vivo models. METHODS: High glucose/high fat diet and streptozotocin injection-induced T2D rat model was used. Berberine was administered p.o. to T2D rat model for 10 weeks. Morris water maze test, in vivo neuronal tracing, immunohistochemistry, and western blot analysis were performed to evaluate the protective effects of berberine in T2D-induced diabetic encephalopathy rats. Primary cultured neurons were used to further explore the underlying mechanisms in vitro. RESULTS: Berberine dramatically reduced blood glucose and serum insulin levels and alleviated insulin resistance. Berberine significantly attenuated memory impairment, axonopathy, and tau hyperphosphorylation, and also restored PI3K/Akt/GSK3ß signaling pathway in T2D rats. In vitro, berberine induced an increase in the phosphorylation of PI3K/Akt as well as GSK3ß in high glucose-treated primary neurons. Furthermore, berberine-induced PI3K/Akt activation also resulted in the dephosphorylation of tau protein, which could improve axonal transport impairment in high glucose-treated primary neurons. Pretreated neurons with LY294002, an inhibitor of PI3K, partially blocked berberine-inhibited tau phosphorylation and berberine-activated PI3K/Akt signaling pathway. CONCLUSIONS: Berberine exerts the protective effect against cognitive deficits by improving tau hyperphosphorylation and the axonal damage through restoring PI3K/Akt/GSK3ß signaling pathway.


Subject(s)
Axons/pathology , Berberine/therapeutic use , Diabetic Nephropathies/drug therapy , Signal Transduction/physiology , tau Proteins/metabolism , Animals , Axons/drug effects , Berberine/pharmacology , Cells, Cultured , Chromones/pharmacology , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/blood , Disease Models, Animal , Embryo, Mammalian , Enzyme Inhibitors/pharmacology , Female , Glucose/pharmacology , Male , Morpholines/pharmacology , Pregnancy , Rats , Rats, Wistar , Signal Transduction/drug effects , Streptozocin
8.
Auris Nasus Larynx ; 42(5): 374-6, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25933586

ABSTRACT

OBJECTIVES: To investigate accuracy of high-resolution computed tomography (HRCT) of temporal bone in revealing fallopian canal fracture among the patients with traumatic facial paralysis. METHODS: HRCT of temporal bone with cross-sectional scanning and multi-planar reformation (MPR) was performed on 31 patients with traumatic facial paralysis, and fracture sites of fallopian canal revealed by HRCT were retrospectively analyzed and compared with surgical findings. RESULTS: HRCT of temporal bone showed fracture of fallopian canal at geniculate ganglion in 25 cases, at tympanic segment in 15 cases, at labyrinthine segment in 5 cases, at pyramid segment in 2 cases, and at mastoid segment in one case, while surgical findings revealed that fracture involved geniculate ganglion in 27 cases, labyrinthine segment in 5, tympanic segment in 19, pyramid segment in 12, and mastoid segment in 9; the sensitivity of HRCT of temporal bone to detect fracture at such sites was 88.9%, 100%, 52.6%, 16.7% and 11.1%, respectively, and the specificity was 96.0%, 100%, 66.7%, 100% and 100%, respectively. CONCLUSION: HRCT of temporal bone was able to accurately reveal fracture of fallopian canal at geniculate ganglion and labyrinthine segment in the vast majority cases, but severely underestimated fracture at pyramid segment and mastoid segment of fallopian canal.


Subject(s)
Facial Nerve Injuries/diagnostic imaging , Facial Paralysis/diagnostic imaging , Geniculate Ganglion/injuries , Skull Fractures/diagnostic imaging , Temporal Bone/diagnostic imaging , Adolescent , Adult , Child , Child, Preschool , Facial Nerve Injuries/complications , Facial Nerve Injuries/diagnosis , Facial Nerve Injuries/surgery , Facial Paralysis/etiology , Facial Paralysis/surgery , Female , Humans , Male , Middle Aged , Retrospective Studies , Sensitivity and Specificity , Skull Fractures/complications , Skull Fractures/diagnosis , Skull Fractures/surgery , Temporal Bone/surgery , Tomography, X-Ray Computed , Young Adult
9.
Pak J Med Sci ; 30(5): 863-967, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25225499

ABSTRACT

OBJECTIVE: To explore the correlation between the plasma renalase level of coronary artery disease (CAD) patients and the degree of coronary artery stenosis. METHODS: A total of 180 patients who received coronary angiography in our hospitals from August 2013 to October 2013 were selected as the CAD group, of which 164 were finally diagnosed as CAD. Another 140 healthy subjects were selected as the control group. The plasma renalase levels of the two groups were detected by ELISA to analyze CA-induced changes and to clarify the correlations with the number of branches with coronary artery stenosis and Syntax scores. RESULTS: The plasma renalase level of the CAD group was significantly lower than that of the control group (P<0.05). The plasma renalase levels of the multi-branch and two-branch stenosis subgroups were significantly lower than that of the subgroup with normal coronary angiography outcomes (P<0.05), while the levels of the single-branch stenosis and normal subgroups were similar (P>0.05). Besides, the plasma renalase level of the low-risk subgroup was significantly higher than those of the medium-risk and high-risk subgroups (P<0.05), and the level of the medium-risk subgroup was significantly higher than that of the high-risk subgroup (P<0.05). Multivariate Logistic regression analysis showed that renalase level was the risk factor of CAD (OR=1.12, 95%CI: 1.03-3.34). CONCLUSION: Plasma renalase level was correlated with CAD, the changes of which may reflect the degree of coronary artery stenosis. Therefore, plasma renalase level can be used to indicate the progression of CAD.

10.
Exp Ther Med ; 8(3): 785-792, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25120600

ABSTRACT

Fistular onion stalk is used as a traditional herbal medicine, and its extract exhibits certain beneficial effects on cardiovascular disease. In this study, the effects of fistular onion stalk extract on the pathological features, circulating inflammatory cytokines, local renin-angiotensin-aldosterone system (RAAS) and signaling pathway activities were examined using an in vivo model of atherosclerosis. Atherosclerosis of the aorta was induced by loading Sprague Dawley rats with a high-fat diet and vitamin D2. Fistular onion stalk extract administration began five weeks after the induction of atherosclerosis and continued for 12 weeks. Rats treated with fistular onion stalk extract showed a significant reduction in the pathological region compared with the vehicle-treated controls. Inhibition of atherosclerosis was associated with preservation of the vascular wall and immune cell infiltration. The extract also reduced the levels of the local inflammatory cytokines interleukin (IL)-1ß, IL-6, monocyte chemoattractant protein-1 and tumor necrosis factor-α. Furthermore, the extract downregulated the local activity of the RAAS. In addition, extract treatment inhibited several inflammatory signaling pathways by preventing phosphorylation, including the nuclear factor κB, Janus kinase/signal transducers and activators of transcription and mitogen-activated protein kinase pathways. These data indicate that fistular onion stalk extract may be useful for the attenuation of atherosclerosis, and the mechanism includes the regulation of the local inflammatory response.

SELECTION OF CITATIONS
SEARCH DETAIL
...