Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Front Pharmacol ; 15: 1371929, 2024.
Article in English | MEDLINE | ID: mdl-38576483

ABSTRACT

Metabolic syndrome (MetS) is a clinical condition associated with multiple metabolic risk factors leading to type 2 diabetes mellitus and other metabolic diseases. Recent evidence suggests that modulating adipose tissue to adaptive thermogenesis may offer therapeutic potential for MetS. Xiasangju (XSJ) is a marketed drug and dietary supplement used for the treatment of metabolic disease with anti-inflammatory activity. This study investigated the therapeutic effects of XSJ and the underlying mechanisms affecting the activation of brown adipose tissue (BAT) in MetS. The results revealed that XSJ ameliorated MetS by enhancing glucose and lipid metabolism, leading to reduced body weight and abdominal circumference, decreased adipose tissue and liver index, and improved blood glucose tolerance. XSJ administration stimulated catecholamine biosynthesis, increasing noradrenaline (NA) levels and activating NA-mediated proteins in BAT. Thus, BAT enhanced thermogenesis and oxidative phosphorylation (OXPHOS). Moreover, XSJ induced changes in gut microbiota composition, with an increase in Oscillibacter abundance and a decrease in Bilophila, Candidatus Stoquefichus, Holdemania, Parasutterella and Rothia. XSJ upregulated the proteins associated with intestinal tight junctions corresponding with lower serum lipopolysaccharide (LPS), tumor necrosis factor α (TNF-α) monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) levels to maintain NA signaling transport. In summary, XSJ may alleviate MetS by promoting thermogenesis in BAT to ultimately boost energy metabolism through increasing NA biosynthesis, strengthening intestinal barrier integrity and reducing low-grade inflammation. These findings suggest XSJ has potential as a natural therapeutic agent for the treatment of MetS.

2.
Chin J Nat Med ; 21(11): 812-829, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38035937

ABSTRACT

Mulberry (Morus alba L.) leaf is a well-established traditional Chinese botanical and culinary resource. It has found widespread application in the management of diabetes. The bioactive constituents of mulberry leaf, specifically mulberry leaf flavonoids (MLFs), exhibit pronounced potential in the amelioration of type 2 diabetes (T2D). This potential is attributed to their ability to safeguard pancreatic ß cells, enhance insulin resistance, and inhibit α-glucosidase activity. Our antecedent research findings underscore the substantial therapeutic efficacy of MLFs in treating T2D. However, the precise mechanistic underpinnings of MLF's anti-T2D effects remain the subject of inquiry. Activation of brown/beige adipocytes is a novel and promising strategy for T2D treatment. In the present study, our primary objective was to elucidate the impact of MLFs on adipose tissue browning in db/db mice and 3T3-L1 cells and elucidate its underlying mechanism. The results manifested that MLFs reduced body weight and food intake, alleviated hepatic steatosis, improved insulin sensitivity, and increased lipolysis and thermogenesis in db/db mice. Moreover, MLFs activated brown adipose tissue (BAT) and induced the browning of inguinal white adipose tissue (IWAT) and 3T3-L1 adipocytes by increasing the expressions of brown adipocyte marker genes and proteins such as uncoupling protein 1 (UCP1) and beige adipocyte marker genes such as transmembrane protein 26 (Tmem26), thereby promoting mitochondrial biogenesis. Mechanistically, MLFs facilitated the activation of BAT and the induction of WAT browning to ameliorate T2D primarily through the activation of AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling pathway. These findings highlight the unique capacity of MLF to counteract T2D by enhancing BAT activation and inducing browning of IWAT, thereby ameliorating glucose and lipid metabolism disorders. As such, MLFs emerge as a prospective and innovative browning agent for the treatment of T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Morus , Mice , Animals , Adipose Tissue, Brown , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Morus/metabolism , Flavonoids/pharmacology , Flavonoids/metabolism , Prospective Studies , Signal Transduction , Adipose Tissue, White , Plant Leaves , Uncoupling Protein 1/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
3.
BMC Complement Med Ther ; 23(1): 308, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37667364

ABSTRACT

BACKGROUND: Mulberry (Morus alba L.) leaf, as a medicinal and food homologous traditional Chinese medicine, has a clear therapeutic effect on type 2 diabetes mellitus (T2DM), yet its underlying mechanisms have not been totally clarified. The study aimed to explore the mechanism of mulberry leaf in the treatment of T2DM through tandem mass tag (TMT)-based quantitative proteomics analysis of skeletal muscle. METHODS: The anti-diabetic activity of mulberry leaf extract (MLE) was evaluated by using streptozotocin-induced diabetic rats at a dose of 4.0 g crude drug /kg p.o. daily for 8 weeks. Fasting blood glucose, body weight, food and water intake were monitored at specific intervals, and oral glucose tolerance test and insulin tolerance test were conducted at the 7th and 8th week respectively. At the end of the experiment, levels of glycated hemoglobin A1c, insulin, free fat acid, leptin, adiponectin, total cholesterol, triglyceride, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol were assessed and the pathological changes of rat skeletal muscle were observed by HE staining. TMT-based quantitative proteomic analysis of skeletal muscle and bioinformatics analysis were performed and differentially expressed proteins (DEPs) were validated by western blot. The interactions between the components of MLE and DEPs were further assessed using molecular docking. RESULTS: After 8 weeks of MLE intervention, the clinical indications of T2DM such as body weight, food and water intake of rats were improved to a certain extent, while insulin sensitivity was increased and glycemic control was improved. Serum lipid profiles were significantly reduced, and the skeletal muscle fiber gap and atrophy were alleviated. Proteomic analysis of skeletal muscle showed that MLE treatment reversed 19 DEPs in T2DM rats, regulated cholesterol metabolism, fat digestion and absorption, vitamin digestion and absorption and ferroptosis signaling pathways. Key differential proteins Apolipoprotein A-1 (ApoA1) and ApoA4 were successfully validated by western blot and exhibited strong binding activity to the MLE's ingredients. CONCLUSIONS: This study first provided skeletal muscle proteomic changes in T2DM rats before and after MLE treatment, which may help us understand the molecular mechanisms, and provide a foundation for developing potential therapeutic targets of anti-T2DM of MLE.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Morus , Animals , Rats , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Experimental/drug therapy , Molecular Docking Simulation , Proteomics , Insulin , Body Weight , Cholesterol, HDL , Plant Extracts/pharmacology
4.
Exp Ther Med ; 26(4): 488, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37745038

ABSTRACT

Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib, are effective in the treatment of non-small cell lung cancer (NSCLC) harboring EGFR mutations. However, the mechanism underlying acquired resistance to EGFR-TKIs remains largely unknown. Therefore, the present study generated gefitinib-resistant PC-9 (PC-9G) cells, which were revealed to be more resistant to gefitinib-induced reductions in proliferation, migration and invasion, and increases in apoptosis, and had no detectable EGFR mutations compared with the control PC-9 cell line. In addition, the present study performed genome-wide transcriptomic analysis of differentially expressed genes between PC-9 and PC-9G cell lines. Cell proliferation, colony formation, invasion, migration and flow cytometry analyses were also performed. The genome-wide transcriptomic analysis revealed that glycogen synthase kinase 3ß (GSK3ß) was downregulated in PC-9G cells compared with that in PC-9 cells. Furthermore, GSK3ß overexpression increased the proliferation, migration and invasion of PC-9 and H1975 gefitinib-resistant cells. Conversely, overexpression of GSK3ß suppressed the proliferation, migration and invasion of PC-9G cells. Furthermore, AKT inhibition reduced the proliferation, migration and invasion, and induced the apoptosis of PC-9, PC-9G and H1975 cells, the effects of which were reversed following AKT activation; notably, the tumor suppressor function of GSK3ß was inconsistent with the tumor promotor role of the AKT pathway in PC-9G cells without EGFR mutation. The present study may provide novel insights into the distinctive role of GSK3ß in gefitinib-resistant NSCLC with or without EGFR mutations, suggesting that a more detailed investigation on GSK3ß as a therapeutic target for gefitinib-resistant NSCLC may be warranted.

5.
Chin Med ; 18(1): 49, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37147692

ABSTRACT

PURPOSE: The purpose of this study is to investigate the relationship between the susceptibility to type 2 diabetes and gut microbiota in rats and to explore the potential mechanism involved. METHODS: Thirty-two SPF-grade SD rats were raised as donor rats, and divided into control, type 2 diabetes mellitus (T2DM, fasting blood glucose ≥ 11.1 mmol/L), and Non-T2DM (fasting blood glucose < 11.1 mmol/L) groups. Feces were collected and prepared as fecal bacteria supernatants Diab (fecal bacteria supernatant of T2DM group rats), Non (fecal bacteria supernatant of Non-T2DM group rats), and Con (fecal bacteria supernatant of control group rats). Another seventy-nine SPF-grade SD rats were separated into normal saline (NS) and antibiotics (ABX) groups and given normal saline and antibiotics solutions, respectively. In addition, the ABX group rats were randomly separated into ABX-ord (fed with a 4-week ordinary diet), ABX-fat (fed with a 4-week high-fat diet and STZ ip), FMT-Diab (with transplanted fecal bacteria supernatant Diab and fed with a 4-week high-fat diet and STZ ip), FMT-Non (with transplanted fecal bacteria supernatant Non and fed with a 4-week high-fat diet and STZ ip), and FMT-Con (with transplanted fecal bacteria supernatant Con and fed with a 4-week high-fat diet and STZ ip) groups. Furthermore, the NS group was randomly divided into NS-ord (fed with a 4-week ordinary diet) and NS-fat (fed with a 4-week high-fat diet and STZ ip) groups. After this, the short-chain fatty acids (SCFAs) in the feces were detected using gas chromatography, and the gut microbiota were detected using 16S rRNA gene sequencing. Finally, G protein-coupled receptor 41 (GPR41) and GPR43 were detected by western blot and quantitative real-time polymerase chain reaction. RESULTS: G__Ruminococcus_gnavus_group were more abundant in the FMT-Diab group compared to the ABX-fat and FMT-Non groups. The levels of blood glucose, serum insulin, total cholesterol, triglycerides, and low-density lipoprotein cholesterol were also higher in the FMT-Diab group compared to those of the ABX-fat group. Compared to the ABX-fat group, both the FMT-Diab and FMT-Non groups had higher contents of acetic and butyric acid, and the expression of GPR41/43 were significantly higher as well. CONCLUSIONS: G__Ruminococcus_gnavus_group might make rats more susceptible to T2DM; T2DM-susceptible flora transplantation increased the susceptibility to T2DM in rats. Additionally, gut microbiota-SCFAs-GPR41/43 may play a role in the development of T2DM. Lowering blood glucose by regulating gut microbiota may therefore become a new strategy for the treatment of T2DM in humans.

6.
Sci Immunol ; 8(81): eadf1426, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36867678

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy relies on T cells that are guided by synthetic receptors to target and lyse cancer cells. CARs bind to cell surface antigens through an scFv (binder), the affinity of which is central to determining CAR T cell function and therapeutic success. CAR T cells targeting CD19 were the first to achieve marked clinical responses in patients with relapsed/refractory B cell malignancies and to be approved by the U.S. Food and Drug Administration (FDA). We report cryo-EM structures of CD19 antigen with the binder FMC63, which is used in four FDA-approved CAR T cell therapies (Kymriah, Yescarta, Tecartus, and Breyanzi), and the binder SJ25C1, which has also been used extensively in multiple clinical trials. We used these structures for molecular dynamics simulations, which guided creation of lower- or higher-affinity binders, and ultimately produced CAR T cells endowed with distinct tumor recognition sensitivities. The CAR T cells exhibited different antigen density requirements to trigger cytolysis and differed in their propensity to prompt trogocytosis upon contacting tumor cells. Our work shows how structural information can be applied to tune CAR T cell performance to specific target antigen densities.


Subject(s)
Adaptor Proteins, Signal Transducing , Antigens, CD19 , United States , Humans , Antigens, Surface , B-Lymphocytes , Cell Death
7.
PLoS Negl Trop Dis ; 17(1): e0011109, 2023 01.
Article in English | MEDLINE | ID: mdl-36701378

ABSTRACT

New biocontrol strategies are urgently needed to combat vector-borne infectious diseases. This study presents a low-cost method to produce a potential mosquito insecticide that utilizes the microalgae released into suburban water sources to control mosquito populations. Chlorella microalgae are ubiquitous in local waters, which were chosen as the host for genetic transfection. This species facilitated the recombinant algae to adapt to the prevailing environmental conditions with rapid growth and high relative abundance. The procedure involved microalgae RNAi-based insecticides developed using short hairpin RNAs targeting the Aedes aegypti chitin synthase A (chsa) gene in Chlorella. These insecticides effectively silenced the chsa gene, inhibiting Aedes metamorphosis in the laboratory and simulated-field trials. This study explored the impact of recombinant microalgae on the phytoplankton and zooplankton in suburban waters. High-throughput sequencing revealed that rapid reproduction of recombinant Chlorella indirectly caused the disappearance of some phytoplankton and reduced the protozoan species. This study demonstrated that a recombinant microalgae-based insecticide could effectively reduce the population of Aedes mosquitoes in the laboratory and simulated field trials. However, the impact of this technology on the environment and ecology requires further investigation.


Subject(s)
Aedes , Chlorella , Insecticides , Microalgae , Animals , Insecticides/pharmacology , Aedes/genetics , RNA, Small Interfering , Plankton , Chlorella/genetics , Mosquito Vectors , Mosquito Control/methods , Insecticide Resistance/genetics
8.
Parasit Vectors ; 16(1): 18, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36653886

ABSTRACT

BACKGROUND: More than half of the world's population suffers from epidemic diseases that are spread by mosquitoes. The primary strategy used to stop the spread of mosquito-borne diseases is vector control. Interference RNA (RNAi) is a powerful tool for controlling insect populations and may be less susceptible to insect resistance than other strategies. However, public concerns have been raised because of the transfer of antibiotic resistance marker genes to environmental microorganisms after integration into the recipient genome, thus allowing the pathogen to acquire resistance. Therefore, in the present study, we modified the 3-hydroxykynurenine transaminase (3hkt) and hormone receptor 3 (hr3) RNAi vectors to remove antibiotic resistance marker genes and retain the expression cassette of the inverse repeat sequence of the 3hkt/hr3 target gene. This recombinant microalgal marker-free RNAi insecticide was subsequently added to the suburban water in a simulated-field trial to test its ability to control mosquito population. METHODS: The expression cassette of the 3hkt/hr3 inverted repeat sequence and a DNA fragment of the argininosuccinate lyase gene without the ampicillin resistance gene were obtained using restriction enzyme digestion and recovery. After the cotransformation of Chlamydomonas, the recombinant algae was then employed to feed Aedes albopictus larvae. Ten and 300 larvae were used in small- and large-scale laboratory Ae.albopictus feeding trials, respectively. Simulated field trials were conducted using Meishe River water that was complemented with recombinant Chlamydomonas. Moreover, the impact of recombinant microalgae on phytoplankton and zooplankton in the released water was explored via high-throughput sequencing. RESULTS: The marker-free RNAi-recombinant Chlamydomonas effectively silenced the 3hkt/hr3 target gene, resulting in the inhibition of Ae. albopictus development and also in the high rate of Ae. albopictus larvae mortality in the laboratory and simulated field trials. In addition, the results confirmed that the effect of recombinant Chlamydomonas on plankton in the released water was similar to that of the nontransgenic Chlamydomonas, which could reduce the abundance and species of plankton. CONCLUSIONS: The marker-free RNAi-recombinant Chlamydomonas are highly lethal to the Ae. albopictus mosquito, and their effect on plankton in released water is similar to that of the nontransgenic algal strains, which reduces the abundance and species of plankton. Thus, marker-free recombinant Chlamydomonas can be used for mosquito biorational control and mosquito-borne disease prevention.


Subject(s)
Aedes , Chlamydomonas , Insecticides , Animals , Aedes/genetics , Plankton , Chlamydomonas/genetics , Mosquito Vectors , Insecticides/pharmacology , Mosquito Control , Animals, Genetically Modified , Larva/genetics
9.
Int J Radiat Biol ; 99(3): 406-418, 2023.
Article in English | MEDLINE | ID: mdl-35759247

ABSTRACT

PURPOSE: The aim of the present study was to investigate the injuries of spleen and intestinal immune system induced by 2 Gy 60Co γ ray in mice. MATERIALS AND METHODS: A total of 120 Balb/c mice were randomly divided into two groups: blank control (Ctrl) and model (IR). The IR mice were exposed to a single dose of total body irradiation (2 Gy, dose rate: 1 Gy/min) and sacrificed on 1st, 3rd, 7th, 14th and 21st day after irradiation. The indicators including general observations and body weight, the changes in peripheral hemogram, spleen index, histopathology examination and lymphocyte subsets of spleen. As well as the count and subsets of lymphocyte in gut-associated lymphoid tissue. RESULTS: Compared with the Ctrl group, the body weight, spleen index, peripheral blood cell and splenocyte amounts, intraepithelial lymphocytes number decreased significantly after exposure, accompanied by a notable decreased count of lymphocytes in Peyer's patch and mesenteric lymph nodes. Moreover, ionizing radiation also broke the balance of CD4+/CD8+ and increased the Treg proportion in spleen, which then triggered immune imbalance and immunosuppression. In general, the spleen injuries occurred on 1st day after exposure, worse on 3rd day, and were relieved on 7th day. The intestinal immune injuries were observed on 1st day, and attenuated on 3rd day. On 21st day after exposure, the spleen volume and index have returned to normal, except for the distribution of lymphocyte subpopulations. Furthermore, all indicators of gut-associated lymphoid tissue, except for mesenteric lymph nodes lymphocyte count, had returned to normal levels on 21st day. CONCLUSION: In conclusion, our data showed the injuries of spleen and intestinal immune system induced by 2 Gy 60Co γ ray whole-body irradiation. These findings may provide the bases for further radiation protection in the immunity.


Subject(s)
Spleen , Whole-Body Irradiation , Mice , Animals , Spleen/radiation effects , Whole-Body Irradiation/adverse effects , Gamma Rays/adverse effects , Immune System/radiation effects , Body Weight
10.
Environ Toxicol ; 38(2): 289-299, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36416502

ABSTRACT

There is no ideal therapy for testicular damage induced by Cr(VI); however, bone marrow mesenchymal stem cells (BMSCs) transplantation may be a promising therapy. A Cr(VI) solution was administered to rats by intraperitoneal injection for 30 days, then BMSCs from donor rats were transplanted. Two weeks later, decreased activity and appetite, along with other pathological changes, were improved in the BMSCs group. The location of BMSCs in damaged testes was observed via laser confocal microscopy. Chromium content in the Cr(VI) and BMSCs groups significantly increased compared with that in the control group, but there was no significant difference between the two groups, as revealed by atomic absorption spectrometry. The ferrous iron and the total iron content of testes in the BMSCs group were significantly lower than those in the Cr(VI) group, as observed by Lillie staining and a tissue iron assay kit. Western blotting and immunohistochemical analyses revealed that the expression of Beclin 1, LC3B, 4-hydroxynonenal, and transferrin receptor 1 was decreased in the BMSCs group, compared with the Cr(VI) group. The expression of glutathione peroxidase 4 (GPX4), SLC7A11, p-AKT, mammalian target of rapamycin (mTOR), and p-mTOR in the BMSCs group was higher than that in the Cr(VI) group. Taken together, we propose that BMSCs repair Cr(VI)-damaged testes by alleviating ferroptosis and downregulating autophagy-associated proteins through the upregulation of AKT and mTOR phosphorylation.


Subject(s)
Bone Marrow Cells , Ferroptosis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Testis , Animals , Rats , Autophagy , Bone Marrow Cells/metabolism , Chromium/toxicity , Iron/metabolism , Mesenchymal Stem Cells/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Testis/drug effects , Testis/injuries , Testis/surgery
11.
J Ethnopharmacol ; 299: 115681, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36084817

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ionizing radiation (IR) has found widespread application in modern medicine. As a result, radiotherapy inevitably causes spermatogenic cell injury. Many Chinese herbal prescriptions or natural extracts have the potential to protect against radiation injury. AIM OF THE STUDY: We used GC-2spd cells to investigate the effects and potential mechanisms of YQJD decoction on protecting spermatogenic cells from ionizing radiation injury. MATERIALS AND METHODS: Firstly, the GC-2spd cells were irradiated with 60Co γ-rays (1 Gy, 2 Gy, 4 Gy and 8 Gy) to establish an in vitro model of radiation injury. After that, Cells were divided into six groups: negative control group (NC group), model group (IR group), positive drug group (IRA group), high-dose YQJD decoction (IRH group), medium-dose YQJD decoction (IRM group), and low-dose YQJD decoction group (IRL group). DNA damage, oxidative damage and inflammatory factors were measured. Cell apoptosis and cell cycle were detected by Flow cytometry. Transmission electron microscopy was performed to observe the morphological changes. RESULTS: After irradiation with 60CO γ-ray, the results indicated that the damage of spermatocyte was significantly induced by radiation exposure over 4 Gy. Furthermore, ionizing radiation could make DNA damage and oxidative stress in in GC-2spd cells. In addition, 60CO γ-ray also caused the increase of IL-1ß, IL-6 and TNF-α and the change of cell cycle. However, the application of YQJD decoction inhibited the damage and apoptosis of GC-2spd cells in the aspects of anti-oxidation, promoting DNA damage repair and regulating inflammatory reaction. CONCLUSIONS: Taken together, the protective effects of YQJD decoction on 60CO γ-ray induced spermatocyte injury were confirmed in this study. This exploration might provide a new strategy for the application of Chinese herbs in radioprotection.


Subject(s)
Drugs, Chinese Herbal , Radiation Injuries , Animals , Male , Mice , Apoptosis , Drugs, Chinese Herbal/pharmacology , Interleukin-6 , Radiation Injuries/drug therapy , Radiation Injuries/prevention & control , Radiation, Ionizing , Spermatocytes/drug effects , Spermatocytes/radiation effects , Tumor Necrosis Factor-alpha/metabolism
12.
Nat Commun ; 13(1): 3854, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35788586

ABSTRACT

The Kv1.3 potassium channel is expressed abundantly on activated T cells and mediates the cellular immune response. This role has made the channel a target for therapeutic immunomodulation to block its activity and suppress T cell activation. Here, we report structures of human Kv1.3 alone, with a nanobody inhibitor, and with an antibody-toxin fusion blocker. Rather than block the channel directly, four copies of the nanobody bind the tetramer's voltage sensing domains and the pore domain to induce an inactive pore conformation. In contrast, the antibody-toxin fusion docks its toxin domain at the extracellular mouth of the channel to insert a critical lysine into the pore. The lysine stabilizes an active conformation of the pore yet blocks ion permeation. This study visualizes Kv1.3 pore dynamics, defines two distinct mechanisms to suppress Kv1.3 channel activity with exogenous inhibitors, and provides a framework to aid development of emerging T cell immunotherapies.


Subject(s)
Kv1.3 Potassium Channel/chemistry , T-Lymphocytes , Humans , Immunoglobulins/metabolism , Kv1.3 Potassium Channel/genetics , Kv1.3 Potassium Channel/metabolism , Lysine , T-Lymphocytes/chemistry
13.
Ann Transl Med ; 10(12): 664, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35845482

ABSTRACT

Background: There have been lingering controversies reported decompression and plus fusion. And the relative safety of fusion in addition to standard decompression remains unclear. This study aimed to assess the effectiveness and safety of decompression alone or combined with fusion in lumbar spinal stenosis (LSS) with degenerative spondylolisthesis (DS). Methods: In this systematic review and meta-analysis, we searched the databases of PubMed, Embase, Cochrane Library, and Web of Science for relevant literature from their inception to 28th December 2021. We identified the eligible studies based on the PICOS principles, populations (LSS with DS), interventions (decompression alone), controls (decompression combined with fusion), outcomes [overall reoperation rate, complications, Oswestry Disability Index (ODI), operative time, the amount of blood lost, length of stay (LOS), and visual analog scales (VAS)], study design (cohort studies). Quality assessment for individual study was performed with the Newcastle-Ottawa Scale (NOS). Results: In all, 12 articles involving a total of 14,693 patients were finally included in the study, the majority of patients underwent decompression alone (DA group: n=11,598) and the rest underwent decompression associated with fusion (FU group: n=3,095). The quality of most of the included studies was regarded as high quality. The results indicated that the FU group had a higher rate of complication [relative risk (RR): 1.770, 95% confidence interval (CI): 1.485 to 2.110], longer operative time [weighted mean difference (WMD): 51.037, 95% CI: 13.743 to 88.330], and increased blood loss (WMD: 258.354, 95% CI: 150.468 to 366.239) than the DA group (all P<0.05), with no significant differences for overall reoperation rate (RR: 0.879, 95% CI: 0.432 to 1.786), ODI (WMD: -2.569, 95% CI: -6.548 to 1.409), LOS (WMD: 3.838, 95% CI: -2.172 to 9.848), and VAS found between the two groups (P>0.05). Conclusions: In patients with LSS + DS, the effectiveness and safety of decompression alone may be superior to decompression plus fusion in terms of complication rate, operative time, and the amount of bleeding. However, more high-quality literature is needed in the future to confirm the best treatment choice for patients with LSS + DS.

14.
Article in English | MEDLINE | ID: mdl-35845591

ABSTRACT

The incidence of liver-related complications in type 2 diabetes mellitus (T2DM) is rapidly increasing, which affects the physical and mental health of T2DM patients. Mulberry leaf flavonoids (MLF) were confirmed to have certain effects on lowering blood glucose and anti-inflammation. In this study, the high-fat diet (HFD) + STZ method was used to establish T2DM rat model and the MLF was administered by gavage for eight weeks. During the experiment, body weight and blood glucose level were measured at different time points. The pathological changes of rat liver were observed by H&E staining. The serum glucolipid metabolic indicators of serum, fasting insulin (FINS), and inflammatory factors levels were detected by ELISA. The expression levels of toll-like receptor 4 (TLR4), TNF receptor-associated factor 6 (TRAF6), myeloid differentiation factor 88 (MyD88), inhibitor of NF-κB alpha (IκΒα), p-IκΒα, and nuclear factor kappa-B (NF-κB)/p65 protein in liver tissue were measured by Western Blot. After 8 weeks' MLF treatment, the blood glucose of rats showed a downward trend; glycolipid metabolism level and insulin resistance were improved, which suggested that MLF could improve the disorder of glucose and lipid metabolism. The pathological damage and inflammation of the liver in T2DM rats were significantly improved, the levels of related serum inflammatory factors were reduced, and the expression of liver tissue-related proteins was downregulated. Our results indicated that MLF could reduce blood glucose and inhibit the development of liver inflammation. The mechanisms may be associated with the activation of TLR4/MyD88/NF-κB signal pathway to reduce the levels of inflammatory factors in serum.

15.
Phytother Res ; 36(6): 2495-2510, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35445769

ABSTRACT

The activation of thermogenic programs in brown adipose tissue (BAT) and white adipose tissue (WAT) provides a promising approach to increasing energy expenditure during obesity and diabetes treatment. Although evidence has been found that rutin activates BAT against obesity and type 2 diabetes mellitus (T2DM), its potential mechanism is not completely understood. In this study, we focused on the potential modulating effect of rutin on short-chain fatty acids (SCFAs) and the thermogenesis of BAT and WAT, aiming to elucidate the molecular mechanism of rutin in the treatment of obesity and T2DM. The results showed that rutin could significantly reduce the body weight and fasting blood glucose, inhibit fat accumulation, relieve hepatic steatosis and ameliorate the disorder of glycolipid metabolism in db/db mice. Moreover, rutin also increased the expression of uncoupling protein 1 (Ucp1) and other thermogenic genes and proteins in BAT and inguinal WAT (IWAT), indicating that rutin activated BAT and induced browning of IWAT. Importantly, rutin markedly enhanced the concentration of SCFAs (acetate, propionate and butyrate) and SCFA-producing enzymes (acetate kinase (ACK), methylmalonyl-CoA decarboxylase (MMD) and butyryl-CoA (BUT)) in feces of db/db mice. In addition, rutin significantly increased the mRNA expression of monocarboxylate transporter 1 (Mct1), catabolic enzyme acyl-CoA medium-chain synthetase 3 (Acsm3), carnitine palmitoyl transferase 1α (Cpt-1α) and Cpt-1ß genes in BAT and IWAT of db/db mice, which is conducive to inducing adipocyte thermogenesis. In summary, our findings revealed that rutin played a variety of regulatory roles in improving glucose and lipid metabolism disorders, reducing hepatic steatosis, inducing browning of IWAT and activating BAT, which has potential therapeutic significance for the treatment of obesity and T2DM. Mechanistically, rutin activates the thermogenesis of BAT and IWAT, which may be associated with increasing the concentration of SCFAs.


Subject(s)
Diabetes Mellitus, Type 2 , Fatty Liver , Adipose Tissue, Brown , Adipose Tissue, White , Animals , Diabetes Mellitus, Type 2/complications , Energy Metabolism , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/pharmacology , Fatty Acids, Volatile/therapeutic use , Mice , Mice, Inbred C57BL , Obesity/metabolism , Rutin/pharmacology , Rutin/therapeutic use , Thermogenesis
16.
Sci Adv ; 8(8): eabm4552, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35213218

ABSTRACT

GITR is a TNF receptor, and its activation promotes immune responses and drives antitumor activity. The receptor is activated by the GITR ligand (GITRL), which is believed to cluster receptors into a high-order array. Immunotherapeutic agonist antibodies also activate the receptor, but their mechanisms are not well characterized. We solved the structure of full-length mouse GITR bound to Fabs from the antibody DTA-1. The receptor is a dimer, and each subunit binds one Fab in an orientation suggesting that the antibody clusters receptors. Binding experiments with purified proteins show that DTA-1 IgG and GITRL both drive extensive clustering of GITR. Functional data reveal that DTA-1 and the anti-human GITR antibody TRX518 activate GITR in their IgG forms but not as Fabs. Thus, the divalent character of the IgG agonists confers an ability to mimic GITRL and cluster and activate GITR. These findings will inform the clinical development of this class of antibodies for immuno-oncology.

17.
Chin Med ; 17(1): 1, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34980192

ABSTRACT

BACKGROUND: Qingwei San (QWS), one of classic Chinese Medicine prescripts, has been widely used to treat stomach heat syndrome which manifests oral ulcer (OU), periodontitis and upper gastrointestinal bleeding for seven hundred years. However, the therapeutic effects of QWS on diabetic OU subjected to stomach heat syndrome are still ambiguous. In the study, we investigated the pharmacological mechanisms. METHODS: The main components of QWS aqueous extract were analyzed by LC-MS, and potential pathways of QWS targeting OU were predicted by network pharmacology. The db/db mice were administered with the decoction of dried Zingiber officinale Rosc. rhizome combined with NaOH cauterization to establish the model of diabetic OU subjected to stomach heat syndrome. Subsequently, the model mice were treated with QWS, and OU wound healing status were recorded. The pathological changes of gastric tissue and oral mucosa were evaluated using hematoxylin-eosin staining, and the morphology of collagen fibers in oral mucosa was assessed by Masson staining. The levels of thromboxane B2 (TXB2), 6-Keto-prostaglandin F1α (6-keto-PGF1α), interleukin-1 ß (IL-1ß), IL-2, IL-6, tumor necrosis factor-α (TNF-α), ß-endorphin (ß-EP) and 5-Hydroxytryptamine (5-HT) were determined by ELISA assay. The protein expressions of Toll-like receptor 4 (TLR4), TNF receptor associated factor 6 (TRAF6), myeloid differentiation factor 88 (MyD88), inhibitor of NF-κB alpha (IκΒα), p-IκΒα and nuclear factor kappa-B (NF-κB) p65 were measured by Western Blotting. RESULTS: A total of 183 compounds in QWS were identified by LC-MS, and identified 79 bioactive compounds corresponded to 269 targets and 59 pathways. QWS high-dose treatment significantly reduced the level of TXB2 and the ratio of TXB2/6-keto-PGF1α. Meanwhile, it improved mucosal pathological morphology, and reduced the area of OU and local edema. Simultaneously, the levels of TNF-α, IL-1ß, IL-6, IL-2 and 5-HT, and the expressions of TLR4, TRAF6, MyD88, p-IκΒα and NF-κB p65 were decreased. CONCLUSION: QWS treatment facilitates the healing of OU, ameliorates pathological morphologies of gastric and oral mucosa and decreases the levels of pro-inflammatory cytokines in db/db mice subjected to stomach heat syndrome, whose mechanism may be associated with the inhibition of TLR4/MyD88/NF-κB signaling pathway to exert anti-inflammatory effects.

18.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Article in English | MEDLINE | ID: mdl-34753824

ABSTRACT

The hydrophobic coupling between membrane proteins and their host lipid bilayer provides a mechanism by which bilayer-modifying drugs may alter protein function. Drug regulation of membrane protein function thus may be mediated by both direct interactions with the protein and drug-induced alterations of bilayer properties, in which the latter will alter the energetics of protein conformational changes. To tease apart these mechanisms, we examine how the prototypical, proton-gated bacterial potassium channel KcsA is regulated by bilayer-modifying drugs using a fluorescence-based approach to quantify changes in both KcsA function and lipid bilayer properties (using gramicidin channels as probes). All tested drugs inhibited KcsA activity, and the changes in the different gating steps varied with bilayer thickness, suggesting a coupling to the bilayer. Examining the correlations between changes in KcsA gating steps and bilayer properties reveals that drug-induced regulation of membrane protein function indeed involves bilayer-mediated mechanisms. Both direct, either specific or nonspecific, binding and bilayer-mediated mechanisms therefore are likely to be important whenever there is overlap between the concentration ranges at which a drug alters membrane protein function and bilayer properties. Because changes in bilayer properties will impact many diverse membrane proteins, they may cause indiscriminate changes in protein function.


Subject(s)
Cell Membrane/drug effects , Membrane Proteins/metabolism , Pharmaceutical Preparations/metabolism , Cell Membrane/metabolism , Drug and Narcotic Control/methods , Gramicidin/pharmacology , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/metabolism , Potassium Channels/metabolism
19.
Cell Rep ; 37(4): 109891, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34706237

ABSTRACT

The kainate receptors (KARs) are members of the ionotropic glutamate receptor family and assemble into tetramers from a pool of five subunit types (GluK1-5). Each subunit confers distinct functional properties to a receptor, but the compositional and stoichiometric diversity of KAR tetramers is not well understood. To address this, we first solve the structure of the GluK1 homomer, which enables a systematic assessment of structural compatibility among KAR subunits. Next, we analyze single-cell RNA sequencing data, which reveal extreme diversity in the combinations of two or more KAR subunits co-expressed within the same cell. We then investigate the composition of individual receptor complexes using single-molecule fluorescence techniques and find that di-heteromers assembled from GluK1, GluK2, or GluK3 can form with all possible stoichiometries, while GluK1/K5, GluK2/K5, and GluK3/K5 can form 3:1 or 2:2 complexes. Finally, using three-color single-molecule imaging, we discover that KARs can form tri- and tetra-heteromers.


Subject(s)
Protein Multimerization , Receptors, Kainic Acid/chemistry , Receptors, Kainic Acid/metabolism , Cell Membrane/chemistry , Cell Membrane/genetics , Cell Membrane/metabolism , HEK293 Cells , Humans , Protein Subunits , Receptors, Kainic Acid/genetics
20.
Biomedicines ; 9(8)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34440212

ABSTRACT

A number of diverse G-protein signaling pathways have been shown to regulate insulin secretion from pancreatic ß-cells. Accordingly, regulator of G-protein signaling (RGS) proteins have also been implicated in coordinating this process. One such protein, RGS4, is reported to show both positive and negative effects on insulin secretion from ß-cells depending on the physiologic context under which it was studied. We here use an RGS4-deficient mouse model to characterize previously unknown G-protein signaling pathways that are regulated by RGS4 during glucose-stimulated insulin secretion from the pancreatic islets. Our data show that loss of RGS4 results in a marked deficiency in glucose-stimulated insulin secretion during both phase I and phase II of insulin release in intact mice and isolated islets. These deficiencies are associated with lower cAMP/PKA activity and a loss of normal calcium surge (phase I) and oscillatory (phase II) kinetics behavior in the RGS4-deficient ß-cells, suggesting RGS4 may be important for regulation of both Gαi and Gαq signaling control during glucose-stimulated insulin secretion. Together, these studies add to the known list of G-protein coupled signaling events that are controlled by RGS4 during glucose-stimulated insulin secretion and highlight the importance of maintaining normal levels of RGS4 function in healthy pancreatic tissues.

SELECTION OF CITATIONS
SEARCH DETAIL
...