Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37413699

ABSTRACT

Intermuscular bones (IBs), distributed specifically in the myosepta on both sides of lower teleosts, negatively affect palatability and processing. Recent research in zebrafish and several economically important farmed fishes has led to the breakthrough discovery of the mechanism of IBs formation and generation of IBs-loss mutants. This study explored the ossification patterns of IBs in juvenile Culter alburnus. Besides, some key genes and bone-related signaling pathways were identified by transcriptomic data. Furthermore, PCR microarray validation revealed that claudin1 could potentially regulate IBs formation. Additionally, we created several IBs-reduced mutants of C. alburnus by loss of the function of bone morphogenetic proteins 6 (bmp6) gene using CRISPR/Cas9 editing. These results suggested that CRISPR/Cas9-mediated bmp6 knockout was promising approach for breeding IBs-free strain in other cyprinids.


Subject(s)
Cyprinidae , Zebrafish , Animals , Zebrafish/genetics , Cyprinidae/genetics , Cyprinidae/metabolism , Gene Expression Profiling , Transcriptome , Bone and Bones
2.
Hepatology ; 65(6): 1948-1962, 2017 06.
Article in English | MEDLINE | ID: mdl-28073159

ABSTRACT

Deregulation of the immune system is believed to contribute to cancer malignancy, which has led to recent therapeutic breakthroughs facilitating antitumor immunity. In a malignant setting, immunoglobulin receptors, which are fundamental components of the human immune system, fulfill paradoxical roles in cancer pathogenesis. This study describes a previously unrecognized pro-oncogenic function of polymeric immunoglobulin receptor (pIgR) in the promotion of cell transformation and proliferation. Mechanistically, pIgR overexpression is associated with YES proto-oncogene 1, Src family tyrosine kinase (Yes) activation, which is required for pIgR-induced oncogenic growth. Specifically, pIgR activates the Yes-DNAX-activating protein of 12 kDa-spleen tyrosine kinase-Rac1/CDC42-MEK (extracellular signal-regulated kinase kinase)/ERK (extracellular signal-regulated kinase) cascade in an immunoreceptor tyrosine-based activating motif (ITAM)-dependent manner to promote cell transformation and tumor growth, although pIgR itself does not contain an ITAM sequence. Additionally, the combination of pIgR and phosphorylated Yes (p-Yes) levels serves as a prognostic biomarker for hepatitis B surface antigen-positive and early-stage hepatocellular carcinoma (HCC) patients. Moreover, pharmacological targeting of MEK/ERK or Yes represents a therapeutic option for the subgroup of patients with pIgR/p-Yes-positive HCC based on our results with both cancer cell-line-based xenografts and primary patient-derived xenografts. CONCLUSION: Our findings reveal the molecular mechanism by which pIgR promotes cancer malignancy, suggest the clinical potential of targeting this pathway in HCC, and provide new insight into the oncogenic role of immunoglobulin receptors. (Hepatology 2017;65:1948-1962).


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/pathology , Cell Transformation, Neoplastic/pathology , Liver Neoplasms/pathology , Receptors, Polymeric Immunoglobulin/metabolism , Animals , Carcinoma, Hepatocellular/immunology , Cell Line, Tumor , Disease Models, Animal , Disease Progression , Dogs , Heterografts , Humans , Liver Neoplasms/immunology , Neoplasms, Experimental , Proto-Oncogene Mas , Random Allocation , Reference Values
3.
J Pharmacol Exp Ther ; 350(1): 36-45, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24741075

ABSTRACT

The hepatocyte growth factor/c-MET signaling axis plays an important role in tumor cell proliferation, metastasis, and tumor angiogenesis, and therefore presents as an attractive target for cancer therapy. Notably, most small-molecule c-MET inhibitors currently undergoing clinical trials are multitarget inhibitors with the unwanted inhibition of additional kinases, often accounting for undesirable toxicity. Here, we discovered SOMG-833 [3-(4-methylpiperazin-1-yl)-5-(3-nitrobenzylamino)-7-(trifluoromethyl) quinoline] as a potent and selective small-molecule c-MET inhibitor, with an average IC50 of 0.93 nM against c-MET, over 10,000-fold more potent compared with 19 tyrosine kinases, including c-MET family members and highly homologous kinases. SOMG-833 strongly suppressed c-MET-mediated signaling transduction regardless of mechanistic complexity implicated in c-MET activation, including MET gene amplification, MET gene fusion, and HGF-stimulated c-MET activation. In a panel of 24 human cancer or genetically engineered model cell lines, SOMG-833 potently inhibited c-MET-driven cell proliferation, whereas cancer cells lacking c-MET activation were markedly less sensitive (at least 15-fold) to the treatment. SOMG-833 also suppressed c-MET-mediated migration, invasion, urokinase activity, and invasive growth phenotype. In addition, inhibition of primary human umbilical vascular endothelial cell (HUVEC) proliferation and downregulation of plasma proangiogenic factor interleukin-8 secretion resulted from SOMG-833 treatment, suggesting its significant antiangiogenic properties. Together, these results led to the remarkable antitumor efficacy of SOMG-833 in vivo, as demonstrated in c-MET-dependent NIH-3T3/TPR-MET, U-87MG, and EBC-1 xenograft models. Collectively, our results suggested SOMG-833 as a promising candidate for highly selective c-MET inhibition and a powerful tool to investigate the sole role of MET kinase in cancer.


Subject(s)
Aminoquinolines/pharmacology , Antineoplastic Agents/pharmacology , Piperazines/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Dogs , Down-Regulation/drug effects , Drug Screening Assays, Antitumor , Female , Human Umbilical Vein Endothelial Cells , Humans , Interleukin-8/drug effects , Interleukin-8/metabolism , Mice , Protein-Tyrosine Kinases/antagonists & inhibitors , Signal Transduction/drug effects
4.
Acta Pharmacol Sin ; 35(1): 89-97, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24241352

ABSTRACT

AIM: c-Met kinase deregulation is strongly associated with the formation, progression and dissemination of human cancers. In this study we identified Yhhu3813 as a small-molecule inhibitor of c-Met kinase and characterized its antitumor properties both in vitro and in vivo. METHODS: The activities of different kinases were measured using ELISA assays and signaling proteins in the cells were detected with Western blotting. Cell proliferation was assessed using SRB or MTT assay in twenty human cell lines and cell cycle distribution was determined with flow cytometry. Transwell-based assay was used to evaluate cell migration and invasion. Cell invasive growth was detected by a morphogenesis assay. c-Met overactivated human NSCLC cell line EBC-1 xenografts were used to evaluate the in vivo anti-tumor efficacy. RESULTS: Yhhu3813 potently inhibited c-Met kinase activity in vitro with an IC50 value of 2.4±0.3 nmol/L, >400-fold higher than that for a panel of 15 different tyrosine kinases, suggesting a high selectivity of Yhhu3813. The compound (20, 100 and 500 nmol/L) dose-dependently inhibited the phosphorylation of c-Met and its key downstream Akt and Erk signal cascades in multiple c-Met aberrant human cancer cell lines, regardless of the mechanistic complexity in c-Met activation across different cellular contexts. In 20 human cancer cell lines harboring different backgrounds of c-Met expression/activation, Yhhu3813 potently inhibited c-Met-driven cell proliferation via arresting cells at G1/S phase. Furthermore, Yhhu3813 substantially impaired c-Met-mediated cell migration, invasion, scattering, and invasive growth. Oral administration of EBC-1 xenograft mice with Yhhu3813 (50 or 100 mg·kg(-1)·d(-1), qd, for 2 weeks) dose-dependently suppressed the tumor growth, which was correlated with a reduction in the intratumoral proliferation index and c-Met signaling. CONCLUSION: Yhhu3813 is a potent selective inhibitor of c-Met that inhibits c-Met-dependent neoplastic phenotypes of human cancer cells in vitro and in vivo.


Subject(s)
Antineoplastic Agents/pharmacology , Phenotype , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/metabolism , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Dogs , Dose-Response Relationship, Drug , Female , HCT116 Cells , HT29 Cells , Humans , Madin Darby Canine Kidney Cells , Mice , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/prevention & control , Protein Kinase Inhibitors/therapeutic use , Random Allocation , Xenograft Model Antitumor Assays/methods
SELECTION OF CITATIONS
SEARCH DETAIL