Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.008
Filter
1.
Opt Lett ; 49(12): 3356-3359, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38875619

ABSTRACT

Mueller matrix microscopy can provide comprehensive polarization-related optical and structural information of biomedical samples label-freely. Thus, it is regarded as an emerging powerful tool for pathological diagnosis. However, the staining dyes have different optical properties and staining mechanisms, which can put influence on Mueller matrix microscopic measurement. In this Letter, we quantitatively analyze the polarization enhancement mechanism from hematoxylin and eosin (H&E) staining in multispectral Mueller matrix microscopy. We examine the influence of hematoxylin and eosin dyes on Mueller matrix-derived polarization characteristics of fibrous tissue structures. Combined with Monte Carlo simulations, we explain how the dyes enhance diattenuation and linear retardance as the illumination wavelength changed. In addition, it is demonstrated that by choosing an appropriate incident wavelength, more visual Mueller matrix polarimetric information can be observed of the H&E stained tissue sample. The findings can lay the foundation for the future Mueller matrix-assisted digital pathology.


Subject(s)
Staining and Labeling , Microscopy, Polarization/methods , Eosine Yellowish-(YS)/chemistry , Monte Carlo Method , Hematoxylin , Humans
2.
J Dairy Sci ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825119

ABSTRACT

Oxidative stress is a crucial factor in the age-related decline in physiological, genomic, metabolic, and immunological functions. We screened Lactiplantibacillus plantarum JS19 (L. plantarum JS19), which has been shown to possess therapeutic properties in mice with ulcerative colitis. In this study, L. plantarum JS19-adjunctly fermented goat milk (LAF) was employed to alleviate D-galactose-induced aging and regulate intestinal flora in an aging mouse model. The oral administration of LAF effectively improved the health of spleen and kidney in mice, while mitigating the hepatocyte and oxidative damage induced by D-galactose. Additionally, LAF alleviated D-galactose-induced dysbiosis of the intestinal flora by reducing the abundance of harmful bacteria Desulfovibrio and Helicobacter, while greatly promoting the growth of beneficial Rikenellaceae_RC9_gut_group and Eubacterium. Biomarker 5-hydroxyindole-3-acetic acid was found to be positively linked with those harmful bacteria, while bio-active metabolites were strongly correlated with the beneficial genus. These observations suggest that LAF possesses the capability to mitigate the effects of D-galactose-induced aging in a mouse model through the regulation of oxidative stress, the gut microbiota composition, and levels of fecal metabolites. Consequently, these findings shed light on the potential of LAF as a functional food with anti-aging properties.

3.
Evol Bioinform Online ; 20: 11769343241257344, 2024.
Article in English | MEDLINE | ID: mdl-38826865

ABSTRACT

In diploid organisms, half of the chromosomes in each cell come from the father and half from the mother. Through previous studies, it was found that the paternal chromosome and the maternal chromosome can be regulated and expressed independently, leading to the emergence of allele specific expression (ASE). In this study, we analyzed the differential expression of alleles in the high-altitude population and the normal population based on the RNA sequencing data. Through gene cluster analysis and protein interaction network analysis, we found some changes occurred at the gene level, and some negative effects. During the study, we realized that the calmodulin homology domain may have a certain correlation with long-term survival at high altitude. The plateau environment is characterized by hypoxia, low air pressure, strong ultraviolet radiation, and low temperature. Accordingly, the genetic changes in the process of adaptation are mainly reflected in these characteristics. High altitude generation living is also highly related to cancer, immune disease, cardiovascular disease, neurological disease, endocrine disease, and other diseases. Therefore, the medical system in high altitude areas should pay more attention to these diseases.

4.
Nat Commun ; 15(1): 4539, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806457

ABSTRACT

Featuring high caloric value, clean-burning, and renewability, hydrogen is a fuel believed to be able to change energy structure worldwide. Biohydrogen production technologies effectively utilize waste biomass resources and produce high-purity hydrogen. Improvements have been made in the biohydrogen production process in recent years. However, there is a lack of operational data and sustainability analysis from pilot plants to provide a reference for commercial operations. In this report, based on spectrum coupling, thermal effect, and multiphase flow properties of hydrogen production, continuous pilot-scale biohydrogen production systems (dark and photo-fermentation) are established as a research subject. Then, pilot-scale hydrogen production systems are assessed in terms of sustainability. The system being evaluated, consumes 171,530 MJ of energy and emits 9.37 t of CO2 eq when producing 1 t H2, and has a payback period of 6.86 years. Our analysis also suggests future pathways towards effective biohydrogen production technology development and real-world implementation.


Subject(s)
Biofuels , Fermentation , Hydrogen , Hydrogen/metabolism , Pilot Projects , Biomass , Bioreactors
5.
Sci Total Environ ; 931: 172885, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38697546

ABSTRACT

Nanobubble (NB) technology has gained popularity in the environmental field owing to its distinctive characteristics and ecological safety. More recently, the application of NB technology in anaerobic digestion (AD) systems has been proven to promote substrate degradation and boost the production of biogas (H2 and/or CH4). This review presents the recent advancements in the application of NB technology in AD systems. Meanwhile, it also sheds light on the underlying mechanisms of NB technology that contribute to the enhanced biogas production from AD of organic solid wastes. Specifically, the working principles of the NB generator are first summarized, and then the structure of the NB generator is optimized to accommodate the demand for NB characteristics in the AD system. Subsequently, it delves into a detailed discussion of how the addition of nanobubble water (NBW) affects AD performance and the different factors that NB can potentially contribute. As a simple and environmentally friendly additive, NBW was commonly used in the AD process to enhance the fluidity and mass transfer characteristics of digestate. Additionally, NB has the potential to enhance the functionality of different types of microbial enzymes that play crucial roles in the AD process. This includes boosting extracellular hydrolase activities, optimizing coenzyme F420, and improving cellulase function. Finally, it is proposed that NBW has development potential for the pretreatment of substrate and inoculum, with future development being directed towards this aim.


Subject(s)
Biofuels , Refuse Disposal , Anaerobiosis , Refuse Disposal/methods , Solid Waste , Bioreactors
6.
Front Plant Sci ; 15: 1395628, 2024.
Article in English | MEDLINE | ID: mdl-38817929

ABSTRACT

Plant epiphytic microorganisms have established a unique symbiotic relationship with plants, which has a significant impact on their growth, immune defense, and environmental adaptation. However, the impact of fertilization methods on the epiphytic microbial community and their correlation with the yield and quality of medicinal plant was still unclear. In current study, we conducted a field fertilization experiment and analyzed the composition of epiphytic bacterial and fungal communities employing high throughput sequencing data in different organs (roots, stems, and leaves) of Salvia miltiorrhiza, as well as their correlation with plant growth. The results showed that fertilization significantly affected the active ingredients and hormone content, soil physicochemical properties, and the composition of epiphytic microbial communities. After fertilization, the plant surface was enriched with a core microbial community mainly composed of bacteria from Firmicutes, Proteobacteria, and Actinobacteria, as well as fungi from Zygomycota and Ascomycota. Additionally, plant growth hormones were the principal factors leading to alterations in the epiphytic microbial community of S. miltiorrhiza. Thus, the most effective method of fertilization involved the application of base fertilizer in combination with foliar fertilizer. This study provides a new perspective for studying the correlation between microbial community function and the quality of S. miltiorrhiza, and also provides a theoretical basis for the cultivation and sustainable development of high-quality medicinal plants.

7.
Environ Res ; 252(Pt 4): 119055, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38710429

ABSTRACT

Application of biochar and inoculation with specific microbial strains offer promising approaches for addressing atrazine contamination in agricultural soils. However, determining the optimal method necessitates a comprehensive understanding of their effects under similar conditions. This study aimed to evaluate the effectiveness of biochar and Paenarthrobacter sp. AT5, a bacterial strain known for its ability to degrade atrazine, in reducing atrazine-related risks to soybean crops and influencing bacterial communities. Both biochar and strain AT5 significantly improved atrazine degradation in both planted and unplanted soils, with the most substantial reduction observed in soils treated with strain AT5. Furthermore, bioaugmentation with strain AT5 outperformed biochar in enhancing soybean growth, photosynthetic pigments, and antioxidant defenses. While biochar promoted higher soil bacterial diversity compared to strain AT5, the latter selectively enriched specific bacterial populations. Additionally, soil inoculated with strain AT5 displayed a notable increase in the abundance of key genes associated with atrazine degradation (trzN, atzB, and atzC), surpassing the effects observed with biochar addition, thus highlighting its effectiveness in mitigating atrazine risks in soil.


Subject(s)
Atrazine , Biodegradation, Environmental , Charcoal , Glycine max , Herbicides , Soil Microbiology , Soil Pollutants , Atrazine/toxicity , Glycine max/microbiology , Glycine max/drug effects , Soil Pollutants/toxicity , Herbicides/toxicity , Soil/chemistry , Bacteria/drug effects , Bacteria/genetics , Bacteria/metabolism
8.
Heliyon ; 10(9): e30505, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38726194

ABSTRACT

FERMT2 has been identified as a participant in integrin-linked kinase signaling pathways, influencing epithelial-mesenchymal transition and thereby affecting tumor initiation, progression, and invasion. While the character of FERMT2 in the tumor microenvironment (TME) as well as its implications for immunotherapy remain unclear. Thus, we conducted a comprehensive analysis to assess the prognostic significance of FERMT2 using Kaplan-Meier analysis. In addition, we employed enrichment analysis to uncover potential underlying molecular mechanisms. Using "Immunedeconv" package, we evaluated the immune characteristics of FERMT2 within TME. Furthermore, we determined the expression levels of FERMT2 in various cell types within TME, based on single-cell sequencing data. To confirm the co-expression of FERMT2 and markers of cancer-associated fibroblasts (CAFs), we performed multiplex immunofluorescence staining on tissue paraffin sections across various cancer types. Our analysis disclosed a significant correlation between elevated FERMT2 expression and unfavorable prognosis in specific cancer types. Furthermore, we identified a strong correlation between FERMT2 expression and diverse immune-related factors, including immune checkpoint molecules, immune cell infiltration, microsatellite instability (MSI), and tumor mutational burden (TMB). Additionally, there was a significant correlation between FERMT2 expression and immune-related pathways, particularly those associated with activating, migrating, and promoting the growth of fibroblasts in diverse cancer types. Interestingly, we observed consistent co-expression of FERMT2 in both malignant tumor cells and stromal cells, particularly within CAFs. Notably, our findings also indicated that FERMT2, in particular, exhibited elevated expression levels within tumor tissues and co-expressed with α-SMA in CAFs based on the multiplex immunofluorescence staining results.

9.
CNS Drugs ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806883

ABSTRACT

BACKGROUND AND PURPOSE: Sex is associated with clinical outcome in stroke. The present study aimed to determine the effect of sex on efficacy of dual antiplatelet (DAPT) versus alteplase in ischemic stroke based on Antiplatelet versus recombinant tissue plasminogen activator (R-tPA) for Acute Mild Ischemic Stroke (ARAMIS) trial. METHODS: In this secondary analysis of the ARAMIS study, eligible patients aged 18 years or older with minor nondisabling stroke who received dual antiplatelet therapy or intravenous alteplase within 4.5 h of stroke onset were divided into two groups: men and women. The primary endpoint was an excellent functional outcome, defined as a modified Rankin Scale (mRS) 0-1 at 90 days. Binary logistic regression analyses and generalized linear models were used. RESULTS: Of the 719 patients who completed the study, 31% (223) were women, and 69% (496) were men. There were no significant sex differences in excellent functional outcome (unadjusted p = 0.304 for men and p = 0.993 for women; adjusted p = 0.376 for men and p = 0.918 for women) and favorable functional outcome (mRS score of 0-2; unadjusted p = 0.968 for men and p = 0.881 for women; adjusted p = 0.824 for men and p = 0.881 for women). But for the secondary outcomes, compared with alteplase, DAPT was associated with a significantly decreased proportion of early neurological deterioration within 24 h in men {unadjusted odds ratio [OR] = 0.440 [95% confidence interval (CI), 0.221-0.878]; p = 0.020; adjusted OR = 0.436 [95% CI, 0.216-0.877]; p = 0.020}, but not in women [unadjusted OR = 0.636 (95% CI, 0.175-2.319), p = 0.490; adjusted OR = 0.687 (95% CI, 0.181-2.609), p = 0.581]. For the safety outcomes, compared with the DAPT group, alteplase was associated with a significantly increased proportion of any bleeding events in men [unadjusted OR = 3.110 (95% CI, 1.103-8.770); p = 0.032], but not in women [unadjusted OR = 5.333 (95% CI, 0.613-46.407), p = 0.129; adjusted OR = 5.394 (95% CI, 0.592-49.112), p = 0.135]. CONCLUSION: Sex did not influence the effect of dual antiplatelet therapy versus intravenous alteplase in minor nondisabling stroke, but more early neurological deterioration and bleeding events occurred in men who received alteplase.

10.
Faraday Discuss ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38766758

ABSTRACT

The exploration of the fundamental formation mechanisms of polycyclic aromatic hydrocarbons (PAHs) is crucial for the understanding of molecular mass growth processes leading to two- and three-dimensional carbonaceous nanostructures (nanosheets, graphenes, nanotubes, buckyballs) in extraterrestrial environments (circumstellar envelopes, planetary nebulae, molecular clouds) and combustion systems. While key studies have been conducted exploiting traditional, high-temperature mechanisms such as the hydrogen abstraction-acetylene addition (HACA) and phenyl addition-dehydrocyclization (PAC) pathways, the complexity of extreme environments highlights the necessity of investigating chemically diverse mass growth reaction mechanisms leading to PAHs. Employing the crossed molecular beams technique coupled with electronic structure calculations, we report on the gas-phase synthesis of phenanthrene (C14H10)-a three-ring, 14π benzenoid PAH-via a phenylethynyl addition-cyclization-aromatization mechanism, featuring bimolecular reactions of the phenylethynyl radical (C6H5CC, X2A1) with benzene (C6H6) under single collision conditions. The dynamics involve a phenylethynyl radical addition to benzene without entrance barrier leading eventually to phenanthrene via indirect scattering dynamics through C14H11 intermediates. The barrierless nature of reaction allows rapid access to phenanthrene in low-temperature environments such as cold molecular clouds which can reach temperatures as low as 10 K. This mechanism constitutes a unique, low-temperature framework for the formation of PAHs as building blocks in molecular mass growth processes to carbonaceous nanostructures in extraterrestrial environments thus affording critical insight into the low-temperature hydrocarbon chemistry in our universe.

11.
Plant Divers ; 46(3): 372-385, 2024 May.
Article in English | MEDLINE | ID: mdl-38798726

ABSTRACT

Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors (TFs) in intricate regulatory networks in a cell-type specific manner. Here we introduced a comprehensive single-cell transcriptomic atlas of Arabidopsis seedlings. This atlas is the result of meticulous integration of 63 previously published scRNA-seq datasets, addressing batch effects and conserving biological variance. This integration spans a broad spectrum of tissues, including both below- and above-ground parts. Utilizing a rigorous approach for cell type annotation, we identified 47 distinct cell types or states, largely expanding our current view of plant cell compositions. We systematically constructed cell-type specific gene regulatory networks and uncovered key regulators that act in a coordinated manner to control cell-type specific gene expression. Taken together, our study not only offers extensive plant cell atlas exploration that serves as a valuable resource, but also provides molecular insights into gene-regulatory programs that varies from different cell types.

12.
Plant Divers ; 46(3): 386-394, 2024 May.
Article in English | MEDLINE | ID: mdl-38798730

ABSTRACT

Vernalization is necessary for winter wheat to flower. However, it is unclear whether vernalization is also required for spring wheat, which is frequently sown in fall, and what molecular mechanisms underlie the vernalization response in wheat varieties. In this study, we examined the molecular mechanisms that regulate vernalization response in winter and spring wheat varieties. For this purpose, we determined how major vernalization genes (VRN1, VRN2, and VRN3) respond to vernalization in these varieties and whether modifications to histones play a role in changes in gene expression. We also identified genes that are differentially regulated in response to vernalization in winter and spring wheat varieties. We found that in winter wheat, but not in spring wheat, VRN1 expression decreases when returned to warm temperature following vernalization. This finding may be associated with differences between spring and winter wheat in the levels of tri-methylation of lysine 27 on histone H3 (H3K27me3) and tri-methylation of lysine 4 on histone H3 (H3K4me3) at the VRN1 gene. Analysis of winter wheat transcriptomes before and after vernalization revealed that vernalization influences the expression of several genes, including those involved in leucine catabolism, cysteine biosynthesis, and flavonoid biosynthesis. These findings provide new candidates for further study on the mechanism of vernalization regulation in wheat.

13.
Sensors (Basel) ; 24(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38733039

ABSTRACT

The calculation of land surface temperatures (LSTs) via low-altitude thermal infrared remote (TIR) sensing images at a block scale is gaining attention. However, the accurate calculation of LSTs requires a precise determination of the range of various underlying surfaces in the TIR images, and existing approaches face challenges in effectively segmenting the underlying surfaces in the TIR images. To address this challenge, this study proposes a deep learning (DL) methodology to complete the instance segmentation and quantification of underlying surfaces through the low-altitude TIR image dataset. Mask region-based convolutional neural networks were utilized for pixel-level classification and segmentation with an image dataset of 1350 annotated TIR images of an urban rail transit hub with a complex distribution of underlying surfaces. Subsequently, the hyper-parameters and architecture were optimized for the precise classification of the underlying surfaces. The algorithms were validated using 150 new TIR images, and four evaluation indictors demonstrated that the optimized algorithm outperformed the other algorithms. High-quality segmented masks of the underlying surfaces were generated, and the area of each instance was obtained by counting the true-positive pixels with values of 1. This research promotes the accurate calculation of LSTs based on the low-altitude TIR sensing images.

14.
Opt Lett ; 49(9): 2273-2276, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691697

ABSTRACT

As a complex anisotropic medium, variation in birefringence within biological tissues is closely associated with numerous physiological behaviors and phenomena. In this Letter, we propose a polarization feature fusion method and corresponding polarimetric parameters, which exhibit excellent performance of capturing the birefringence dynamic variation process in complex anisotropic media. By employing the feature fusion method, we combine and transform polarization basis parameters (PBPs) to derive fused polarization feature parameters (FPPs) with explicit expressions. Subsequently, we conduct Monte Carlo (MC) simulation to demonstrate the effectiveness of the proposed FPPs from two variation dimensions of birefringence direction θ and modulus Δn. Leveraging mathematical modeling and linear transformations, we investigate and abstract their response patterns concerning θ and Δn. Finally, the experiments confirm that the FPPs show superior adaptability and interpretability in characterizing the birefringence dynamic process of turbid media. The findings presented in this study provide new, to the best of our knowledge, methodological insights of information extraction for computational polarimetry in biomedical research.

15.
Environ Res ; 252(Pt 2): 118919, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38631468

ABSTRACT

The escalation of global water pollution due to emerging pollutants has gained significant attention. To address this issue, catalytic peroxymonosulfate (PMS) activation technology has emerged as a promising treatment approach for effectively decontaminating a wide range of pollutants. Recently, modified biochar has become an increasingly attractive as PMS activator. Metal-heteroatom-co-doped biochar (MH-BC) has emerged as a promising catalyst that can provide enhanced performance over heteroatom-doped and metal-doped biochar due to the synergism between metal and heteroatom in promoting PMS activation. Therefore, this review aims to discuss the fabrication pathways (i.e., internal vs external doping and pre-vs post-modification) and key parameters (i.e., source of precursors, synthesis methods, and synthesis conditions) affecting the performance of MH-BC as PMS activator. Subsequently, an overview of all the possible PMS activation pathways by MH-BC is provided. Subsequently, Also, the detection, identification, and quantification of several reactive species (such as, •OH, SO4•-, O2•-, 1O2, and high valent oxo species) generated in the catalytic PMS system by MH-BC are also evaluated. Lastly, the underlying challenges associated with poor stability, the lack of understanding regarding the interaction between metal and heteroatom during PMS activation and quantification of radicals in multi-ROS system are also deliberated.


Subject(s)
Charcoal , Environmental Restoration and Remediation , Peroxides , Charcoal/chemistry , Peroxides/chemistry , Environmental Restoration and Remediation/methods , Catalysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Metals/chemistry
16.
Cancer Lett ; 590: 216861, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38583649

ABSTRACT

Immunotherapy represented by programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) monoclonal antibodies has led tumor treatment into a new era. However, the low overall response rate and high incidence of drug resistance largely damage the clinical benefits of existing immune checkpoint therapies. Recent studies correlate the response to PD-1/PD-L1 blockade with PD-L1 expression levels in tumor cells. Hence, identifying molecular targets and pathways controlling PD-L1 protein expression and stability in tumor cells is a major priority. In this study, we performed a Stress and Proteostasis CRISPR interference screening to identify PD-L1 positive modulators. Here, we identified TRAF6 as a critical regulator of PD-L1 in melanoma cells. As a non-conventional E3 ubiquitin ligase, TRAF6 is inclined to catalyze the synthesis and linkage of lysine-63 (K63) ubiquitin which is related to the stabilization of substrate proteins. Our results showed that suppression of TRAF6 expression down-regulates PD-L1 expression on the membrane surface of melanoma cells. We then used in vitro and in vivo assays to investigate the biological function and mechanism of TRAF6 and its downstream YAP1/TFCP2 signaling in melanoma. TRAF6 stabilizes YAP1 by K63 poly-ubiquitination modification, subsequently promoting the formation of YAP1/TFCP2 transcriptional complex and PD-L1 transcription. Inhibition of TRAF6 by Bortezomib enhanced cytolytic activity of CD8+ T cells by reduction of endogenous PD-L1. Notably, Bortezomib enhances anti-tumor immunity to an extent comparable to anti-PD-1 therapies with no obvious toxicity. Our findings reveal the potential of inhibiting TRAF6 to stimulate internal anti-tumor immunological effect for TRAF6-PD-L1 overexpressing cancers.


Subject(s)
Adaptor Proteins, Signal Transducing , B7-H1 Antigen , Melanoma , Signal Transduction , TNF Receptor-Associated Factor 6 , Transcription Factors , YAP-Signaling Proteins , Humans , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Melanoma/metabolism , Melanoma/genetics , Melanoma/drug therapy , Melanoma/pathology , Melanoma/immunology , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Cell Line, Tumor , Mice , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/genetics , Gene Expression Regulation, Neoplastic , Ubiquitination , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism
17.
J Environ Manage ; 359: 120951, 2024 May.
Article in English | MEDLINE | ID: mdl-38669877

ABSTRACT

Atrazine, a widely used herbicide in modern agriculture, can lead to soil contamination and adverse effects on specific crops. To address this, we investigated the efficacy of biochar loaded with Paenarthrobacter sp. AT5 (an atrazine-degrading bacterial strain) in mitigating atrazine's impact on soybeans in black soil. Bacterially loaded biochar (BBC) significantly enhanced atrazine removal rates in both unplanted and planted soil systems. Moreover, BBC application improved soybean biomass, photosynthetic pigments, and antioxidant systems while mitigating alterations in metabolite pathways induced by atrazine exposure. These findings demonstrate the effectiveness of BBC in reducing atrazine-induced oxidative stress on soybeans in black soil, highlighting its potential for sustainable agriculture.


Subject(s)
Atrazine , Charcoal , Glycine max , Oxidative Stress , Soil Pollutants , Soil , Atrazine/toxicity , Glycine max/drug effects , Oxidative Stress/drug effects , Soil/chemistry , Charcoal/chemistry , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Herbicides/toxicity
18.
Environ Sci Technol ; 58(17): 7469-7479, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38557082

ABSTRACT

Trivalent arsenicals such as arsenite (AsIII) and methylarsenite (MAsIII) are thought to be ubiquitous in flooded paddy soils and have higher toxicity than pentavalent forms. Fungi are widely prevalent in the rice rhizosphere, and the latter is considered a hotspot for As uptake. However, few studies have focused on alleviating As toxicity in paddy soils using fungi. In this study, we investigated the mechanism by which the protein TaGlo1, derived from the As-resistant fungal strain Trichoderma asperellum SM-12F1, mitigates AsIII and MAsIII toxicity in paddy soils. Taglo1 gene expression in Escherichia coli BL21 conferred strong resistance to AsIII and MAsIII, while purified TaGlo1 showed a high affinity for AsIII and MAsIII. Three cysteine residues (Cys13, Cys18, and Cys71) play crucial roles in binding with AsIII, while only two (Cys13 and Cys18) play crucial roles for MAsIII binding. TaGlo1 had a stronger binding strength for MAsIII than AsIII. Importantly, up to 90.2% of the homologous TaGlo1 proteins originate from fungi by GenBank searching. In the rhizospheres of 14 Chinese paddy soils, Taglo1 was widely distributed and its gene abundance increased with porewater As. This study highlights the potential of fungi to mitigate As toxicity and availability in the soil-rice continuum and suggests future microbial strategies for bioremediation.


Subject(s)
Soil Pollutants , Soil , Soil/chemistry , Arsenites , Soil Microbiology , Oryza
19.
Environ Pollut ; 351: 123969, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38615835

ABSTRACT

The issue of cadmium (Cd) contamination in alkaline soils is escalating, necessitating the prompt implementation of effective passivation strategies. Biochar has gained significant attention for its potential in immobilizing heavy metals; however, the suitability of biochar as a remediation material and its micro-scale interaction mechanisms with Cd under alkaline conditions remain unclear. Rape straw (RS) were pyrolyzed at 400 °C (RB400) and 700 °C (RB700) to produce biochar. Adsorption and soil incubation experiments were carried out to assess the feasibility of using rape straw derived biochar pyrolyze at different temperatures and understanding their remediation mechanisms in alkaline environments. The sorption capacity for Cd immobilization was evaluated using sorption isotherms, revealing that RB700 exhibited enhanced Cd sorption performance with a maximum sorption capacity of 119.33 mg g-1 calculated from the Langmuir isotherm equation at pH 8. Cd L3-edge X-ray absorption near-edge structure (XANES) spectroscopy analysis confirmed that the dominant sorption species of Cd were organic Cd in RB400, with CdCO3 precipitation increased to 73.9% in RB700. Solid-state 13C nuclear magnetic resonance (13C-NMR) spectroscopy demonstrated that aromatic and carboxyl C functional groups are involved in the organic sorption of Cd through complexation and Cd2+-π interactions in alkaline solutions. The precipitation of CdCO3 in RB700 may resulted in a more effective passivation effect compared to RB400, leading to a significant 15.54% reduction in the DTPA-Cd content in Cd-contaminated soil. These findings highlight the effective Cd passivation Cd in alkaline environments by rape straw derived biochar, providing new molecular insights into the Cd retention mechanism of biochar. Furthermore, it presents novel ideas for improving remediation approaches for alkaline Cd-contaminated soils.


Subject(s)
Cadmium , Charcoal , Environmental Restoration and Remediation , Soil Pollutants , Soil , Cadmium/chemistry , Charcoal/chemistry , Soil Pollutants/chemistry , Environmental Restoration and Remediation/methods , Adsorption , Soil/chemistry , Hydrogen-Ion Concentration , Brassica rapa/chemistry
20.
Cell Cycle ; 23(5): 537-554, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38662954

ABSTRACT

Cholesteatoma is a common disease of the middle ear. Currently, surgical removal is the only treatment option and patients face a high risk of relapse. The molecular basis of cholesteatoma remains largely unknown. Here, we show that Osteopontin (OPN), a predominantly secreted protein, plays a crucial role in the development of middle ear cholesteatoma. Global transcriptome analysis revealed the loss of epithelial features and an enhanced immune response in human cholesteatoma tissues. Quantitative RT-PCR and immunohistochemical staining of middle ear cholesteatoma validated the reduced expression of epithelial markers, as well as the elevated expression of mesenchymal markers including Vimentin and Fibronectin, but not N-Cadherin, α-smooth muscle actin (α-SMA) or ferroptosis suppressor protein 1 (FSP1), indicating a partial epithelial-mesenchymal transition (EMT) state. Besides, the expression of OPN was significantly elevated in human cholesteatoma tissues. Treatment with OPN promoted cell proliferation, survival and migration and led to a partial EMT in immortalized human keratinocyte cells. Importantly, blockade of OPN signaling could remarkably improve the cholesteatoma-like symptoms in SD rats. Our mechanistic study demonstrated that the AKT-zinc finger E-box binding homeobox 2 (ZEB2) axis mediated the effects of OPN. Overall, these findings suggest that targeting the OPN signaling represents a promising strategy for the treatment of middle ear cholesteatoma.


Subject(s)
Cell Proliferation , Cholesteatoma, Middle Ear , Epithelial-Mesenchymal Transition , Osteopontin , Rats, Sprague-Dawley , Epithelial-Mesenchymal Transition/genetics , Humans , Osteopontin/metabolism , Osteopontin/genetics , Animals , Cholesteatoma, Middle Ear/metabolism , Cholesteatoma, Middle Ear/pathology , Cholesteatoma, Middle Ear/genetics , Rats , Cell Proliferation/genetics , Cell Movement/genetics , Signal Transduction , Male , Proto-Oncogene Proteins c-akt/metabolism , Zinc Finger E-box Binding Homeobox 2/metabolism , Zinc Finger E-box Binding Homeobox 2/genetics , Keratinocytes/metabolism , Keratinocytes/pathology , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...