Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 9: 393, 2018.
Article in English | MEDLINE | ID: mdl-29740319

ABSTRACT

The balance and smooth shift between flexible, goal-directed behaviors and repetitive, habitual actions are critical to optimal performance of behavioral tasks. The striatum plays an essential role in control of goal-directed versus habitual behaviors through a rich interplay of the numerous neurotransmitters and neuromodulators to modify the input, processing and output functions of the striatum. The adenosine receptors (namely A2AR and A1R), with their high expression pattern in the striatum and abilities to interact and integrate dopamine, glutamate and cannabinoid signals in the striatum, may represent novel therapeutic targets for modulating instrumental behavior. In this study, we examined the effects of pharmacological blockade of the A2ARs and A1Rs on goal-directed versus habitual behaviors in different information processing phases of instrumental learning using a satiety-based instrumental behavior procedure. We found that A2AR antagonist acts at the coding, consolidation and expression phases of instrumental learning to modulate animals' sensitivity to goal-directed valuation without modifying action-outcome contingency. However, pharmacological blockade and genetic knockout of A1Rs did not affect acquisition or sensitivity to goal-valuation of instrumental behavior. These findings provide pharmacological evidence for a potential therapeutic strategy to control abnormal instrumental behaviors associated with drug addiction and obsessive-compulsive disorder by targeting the A2AR.

2.
Exp Neurol ; 283(Pt A): 213-23, 2016 09.
Article in English | MEDLINE | ID: mdl-27342081

ABSTRACT

Synucleinopathy is characterized by abnormal accumulation of misfolded α-synuclein (α-Syn)-positive cytoplasmic inclusions and by neurodegeneration and cognitive impairments, but the pathogenesis mechanism of synucleinopathy remains to be defined. Using a transmission model of synucleinopathy by intracerebral injection of preformed A53T α-Syn fibrils, we investigated whether aberrant adenosine A2A receptor (A2AR) signaling contributed to pathogenesis of synucleinopathy. We demonstrated that intra-hippocampal injection of preformed mutant α-Syn fibrils triggered a striking and selective induction of A2AR expression which was closely co-localized with pSer129 α-Syn-rich inclusions in neurons and glial cells of hippocampus. Importantly, by abolishing aberrant A2AR signaling triggered by mutant α-Syn, genetic deletion of A2ARs blunted a cascade of pathological events leading to synucleinopathy, including pSer129 α-Syn-rich and p62-positive aggregates, NF-κB activation and astrogliosis, apoptotic neuronal cell death and working memory deficits without affecting motor activity. These findings define α-Syn-triggered aberrant A2AR signaling as a critical pathogenesis mechanism of synucleinopathy with dual controls of cognition and neurodegeneration by modulating α-Syn aggregates. Thus, aberrant A2AR signaling represents a useful biomarker as well as a therapeutic target of synucleinopathy.


Subject(s)
Cognition Disorders/metabolism , Nerve Degeneration/metabolism , Receptor, Adenosine A2A/metabolism , Signal Transduction/physiology , alpha-Synuclein/metabolism , alpha-Synuclein/toxicity , Analysis of Variance , Animals , Cognition Disorders/genetics , Cognition Disorders/pathology , Disease Models, Animal , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Hippocampus/drug effects , Hippocampus/pathology , In Situ Nick-End Labeling , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation/genetics , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Nerve Tissue Proteins/metabolism , Neuroglia/metabolism , Neuroglia/pathology , RNA, Messenger/metabolism , Receptor, Adenosine A2A/genetics , alpha-Synuclein/genetics
3.
Front Mol Neurosci ; 9: 151, 2016.
Article in English | MEDLINE | ID: mdl-28082865

ABSTRACT

Striatal adenosine A2A receptors (A2ARs) modulate striatal synaptic plasticity and instrumental learning, possibly by functional interaction with the dopamine D2 receptors (D2Rs) and metabotropic glutamate receptors 5 (mGluR5) through receptor-receptor heterodimers, but in vivo evidence for these interactions is lacking. Using in situ proximity ligation assay (PLA), we studied the subregional distribution of the A2AR-D2R and A2AR-mGluR5 heterodimer complexes in the striatum and their adaptive changes over the random interval and random ratio training of instrumental learning. After confirming the specificity of the PLA detection of the A2AR-D2R heterodimers with the A2AR knockout and D2R knockout mice, we detected a heterogeneous distribution of the A2AR-D2R heterodimer complexes in the striatum, being more abundant in the dorsolateral than the dorsomedial striatum. Importantly, habit formation after the random interval training was associated with the increased formation of the A2AR-D2R heterodimer complexes, with prominant increase in the dorsomedial striatum. Conversely, goal-directed behavior after the random ratio schedule was not associated with the adaptive change in the A2AR-D2R heterodimer complexes. In contrast to the A2AR-D2R heterodimers, the A2AR-mGluR5 heterodimers showed neither subregional variation in the striatum nor adaptive changes over either the random ratio (RR) or random interval (RI) training of instrumental learning. These findings suggest that development of habit formation is associated with increased formation of the A2AR-D2R heterodimer protein complexes which may lead to reduced dependence on D2R signaling in the striatum.

SELECTION OF CITATIONS
SEARCH DETAIL
...