Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Int J Immunopathol Pharmacol ; 37: 3946320231184988, 2023.
Article in English | MEDLINE | ID: mdl-37400958

ABSTRACT

OBJECTIVES: This experimental study aims to investigate the role of long noncoding RNA X-inactive specific transcript (lncRNA XIST) in the microglial polarization and microglia-mediated neurotoxicity in Alzheimer's disease (AD). METHODS: The levels of XIST and microRNA-107 (miR-107) were detected by quantitative real-time polymerase chain reaction. The spatial learning and memory capability of APPswe/PS1dE9 (APP/PS1) mice were evaluated by the Morris water maze test. The morphology of mouse hippocampus cells was evaluated by hematoxylin and eosin staining. The Iba1-positive microglia were labeled by immunohistochemistry staining. The protein levels were determined by western blot and enzyme-linked immunosorbent assay. Neurotoxicity was evaluated by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, caspase-3 activity, and Cell Counting Kit-8 assay. The XIST, miR-107, and AD targets were predicted by bioinformatics analysis. RESULTS: The level of XIST was increased in APP/PS1 mice, and XIST silencing ameliorated AD progression. XIST silencing suppressed microglia activation, microglial M1 polarization, and proinflammatory factor levels, but promoted microglial M2 polarization in APP/PS1 mice and Aß1-42-treated BV-2 cells. XIST knockdown reduced Aß1-42-induced microglia-mediated apoptosis and enhanced cell viability in HT22 cells. XIST silencing down-regulated miR-107 level and attenuated Aß1-42-caused suppression of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling. Those effects of XIST silencing were attenuated by miR-107 inhibitor or LY294002. CONCLUSION: Downregulation of XIST lessened Aß1-42-induced microglia-mediated neurotoxicity by modulating microglial M1/M2 polarization, which may be mediated by the miR-107/PI3K/Akt pathway.


Subject(s)
Alzheimer Disease , MicroRNAs , RNA, Long Noncoding , Mice , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Microglia , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases , Alzheimer Disease/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
2.
Acta Neuropathol ; 145(6): 717-731, 2023 06.
Article in English | MEDLINE | ID: mdl-36964213

ABSTRACT

Cerebral amyloid-ß (Aß) accumulation due to impaired Aß clearance is a pivotal event in the pathogenesis of Alzheimer's disease (AD). Considerable brain-derived Aß is cleared via transporting to the periphery. The liver is the largest organ responsible for the clearance of metabolites in the periphery. Whether the liver physiologically clears circulating Aß and its therapeutic potential for AD remains unclear. Here, we found that about 13.9% of Aß42 and 8.9% of Aß40 were removed from the blood when flowing through the liver, and this capacity was decreased with Aß receptor LRP-1 expression down-regulated in hepatocytes in the aged animals. Partial blockage of hepatic blood flow increased Aß levels in both blood and brain interstitial fluid. The chronic decline in hepatic Aß clearance via LRP-1 knockdown specific in hepatocytes aggravated cerebral Aß burden and cognitive deficits, while enhancing hepatic Aß clearance via LRP-1 overexpression attenuated cerebral Aß deposition and cognitive impairments in APP/PS1 mice. Our findings demonstrate that the liver physiologically clears blood Aß and regulates brain Aß levels, suggesting that a decline of hepatic Aß clearance during aging could be involved in AD development, and hepatic Aß clearance is a novel therapeutic approach for AD.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Peptides/metabolism , Brain/pathology , Liver/metabolism , Liver/pathology , Mice, Transgenic , Disease Models, Animal
3.
J Alzheimers Dis ; 92(2): 477-485, 2023.
Article in English | MEDLINE | ID: mdl-36776069

ABSTRACT

BACKGROUND: The kidney-brain crosstalk has been involved in Alzheimer's disease (AD) with the mechanism remaining unclear. The anti-aging factor Klotho was reported to attenuate both kidney injury and AD pathologies. OBJECTIVE: To investigate whether plasma Klotho participated in kidney-brain crosstalk in AD. METHODS: We enrolled 33 PiB-PET-positive AD patients and 33 amyloid-ß (Aß)-negative age- and sex-matched cognitively normal (CN) controls from the Chongqing Ageing & Dementia Study (CADS). The levels of plasma Klotho, Aß, and tau in the cerebrospinal fluid (CSF) were measured by enzyme-linked immunosorbent assay. RESULTS: We found higher plasma Klotho and lower estimated glomerular filtration rate (eGFR) levels in AD patients compared with CN. The eGFR was positively associated with Aß42, Aß40 levels in CSF and negatively associated with CSF T-tau levels. Plasma Klotho levels were both negatively correlated with CSF Aß42 and eGFR. Mediation analysis showed that plasma Klotho mediated 24.96% of the association between eGFR and CSF Aß42. CONCLUSION: Renal function impacts brain Aß metabolism via the kidney-brain crosstalk, in which the plasma Klotho may be involved as a mediator. Targeting Klotho to regulate the kidney-brain crosstalk provides potential therapeutic approaches for AD.


Subject(s)
Alzheimer Disease , Humans , Aging , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Biomarkers/cerebrospinal fluid , Brain/metabolism , Peptide Fragments/cerebrospinal fluid , tau Proteins/metabolism
4.
Neurosci Bull ; 39(2): 261-272, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35974288

ABSTRACT

The extracellular domain (p75ECD) of p75 neurotrophin receptor (p75NTR) antagonizes Aß neurotoxicity and promotes Aß clearance in Alzheimer's disease (AD). The impaired shedding of p75ECD is a key pathological process in AD, but its regulatory mechanism is largely unknown. This study was designed to investigate the presence and alterations of naturally-occurring autoantibodies against p75ECD (p75ECD-NAbs) in AD patients and their effects on AD pathology. We found that the cerebrospinal fluid (CSF) level of p75ECD-NAbs was increased in AD, and negatively associated with the CSF levels of p75ECD. Transgenic AD mice actively immunized with p75ECD showed a lower level of p75ECD and more severe AD pathology in the brain, as well as worse cognitive functions than the control groups, which were immunized with Re-p75ECD (the reverse sequence of p75ECD) and phosphate-buffered saline, respectively. These findings demonstrate the impact of p75ECD-NAbs on p75NTR/p75ECD imbalance, providing a novel insight into the role of autoimmunity and p75NTR in AD.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/pathology , Receptor, Nerve Growth Factor , Amyloid beta-Peptides , Autoantibodies , Mice, Transgenic
5.
CNS Neurosci Ther ; 28(12): 2218-2229, 2022 12.
Article in English | MEDLINE | ID: mdl-36074475

ABSTRACT

INTRODUCTION AND AIMS: Alzheimer's disease (AD) is the most common form of dementia with a complex genetic background. The cause of sporadic AD (sAD) remains largely unknown. Increasing evidence shows that genetic variations play a crucial role in sAD. P75 neurotrophin receptor (p75NTR, encoded by NGFR) plays a critical role in the pathogenesis of AD. Yet, the relationship between NGFR gene polymorphisms and AD was less studied. This study aims to analyze the relationship of NGFR gene polymorphism with the risk of AD in the Chinese Han population and amyloid-ß deposition in the ADNI cohort. METHODS: This case-control association study was conducted in a Chinese Han cohort consisting of 366 sporadic AD (sAD) patients and 390 age- and sex-matched controls. Twelve tag-SNPs were selected and genotyped with a multiplex polymerase chain reaction-ligase detection reaction (PCR-LDR) method. The associations between tag-SNPs and the risk of AD were analyzed by logistic regression. Moreover, another cohort from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database was included to examine the association of one tag-SNP (rs2072446) with indicators of amyloid deposition. Kaplan-Meier survival analysis and Cox proportional hazards models were used to test the predictive abilities of rs2072446 genotypes for AD progression. The mediation effects of Aß deposition on this association were subsequently tested by mediation analyses. RESULTS: After multiple testing corrections, one tag-SNP, rs2072446, was associated with an increased risk of sAD (additive model, OR = 1.79, Padjustment  = 0.0144). Analyses of the ADNI cohort showed that the minor allele (T) of rs2072446 was significantly associated with the heavier Aß burden, which further contributed to an increased risk of AD progression in APOE ε4 non-carrier. CONCLUSION: Our study found that rs2072446 in NGFR is associated with both the risk of sAD in the Chinese Han population and the amyloid burden in the ADNI cohort, which reveals the role of p75NTR in AD from a genetic perspective.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Amyloid beta-Peptides/genetics , Polymorphism, Single Nucleotide , Asian People , Brain , Genetic Predisposition to Disease , Nerve Tissue Proteins/genetics , Receptors, Nerve Growth Factor/genetics
6.
Transl Psychiatry ; 12(1): 194, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35538065

ABSTRACT

Angiostatin, an endogenous angiogenesis inhibitor generated by the proteolytic cleavage of plasminogen, was recently reported to contribute to the development of Alzheimer's disease (AD). However, whether there are pathological changes in angiostatin levels in individuals with AD dementia is unclear, and whether plasma angiostatin has a relationship with major AD pathological processes and cognitive impairment remains unknown. To examine plasma angiostatin levels in patients with AD dementia and investigate the associations of angiostatin with blood and cerebrospinal fluid (CSF) AD biomarkers, we conducted a cross-sectional study including 35 cognitively normal control (CN) subjects and 59 PiB-PET-positive AD dementia patients. We found that plasma angiostatin levels were decreased in AD dementia patients compared to CN subjects. Plasma angiostatin levels were negatively correlated with plasma Aß42 and Aß40 levels in AD dementia patients and positively correlated with CSF total tau (t-tau) levels and t-tau/Aß42 in AD dementia patients with APOE-ε4. In addition, plasma angiostatin levels had the potential to distinguish AD from CN. These findings suggest a link between angiostatin and AD pathogenesis and imply that angiostatin might be a potential diagnostic biomarker for AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Angiostatins , Cognitive Dysfunction , tau Proteins , Alzheimer Disease/blood , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/cerebrospinal fluid , Angiostatins/blood , Angiostatins/cerebrospinal fluid , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/blood , Cognitive Dysfunction/cerebrospinal fluid , Cross-Sectional Studies , Humans , Peptide Fragments/blood , Peptide Fragments/cerebrospinal fluid , tau Proteins/blood , tau Proteins/cerebrospinal fluid
7.
Neurosci Bull ; 38(9): 1025-1040, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35570231

ABSTRACT

Increased neuronal apoptosis is an important pathological feature of Alzheimer's disease (AD). The Bcl-2-interacting mediator of cell death (Bim) mediates amyloid-beta (Aß)-induced neuronal apoptosis. Naturally-occurring antibodies against Bim (NAbs-Bim) exist in human blood, with their levels and functions unknown in AD. In this study, we found that circulating NAbs-Bim were decreased in AD patients. Plasma levels of NAbs-Bim were negatively associated with brain amyloid burden and positively associated with cognitive functions. Furthermore, NAbs-Bim purified from intravenous immunoglobulin rescued the behavioral deficits and ameliorated Aß deposition, tau hyperphosphorylation, microgliosis, and neuronal apoptosis in APP/PS1 mice. In vitro investigations demonstrated that NAbs-Bim were neuroprotective against AD through neutralizing Bim-directed neuronal apoptosis and the amyloidogenic processing of amyloid precursor protein. These findings indicate that the decrease of NAbs-Bim might contribute to the pathogenesis of AD and immunotherapies targeting Bim hold promise for the treatment of AD.


Subject(s)
Alzheimer Disease , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Humans , Mice , Mice, Transgenic
8.
J Alzheimers Dis ; 88(1): 375-383, 2022.
Article in English | MEDLINE | ID: mdl-35599489

ABSTRACT

BACKGROUND: The dysregulation of lipid metabolism plays an important role in the pathogenesis of Alzheimer's disease (AD). Liver-type fatty acid-binding protein (L-FABP, also known as FABP1) is critical for fatty acid transport and may be involved in AD. OBJECTIVE: To investigate whether the FABP1 level is altered in patients with AD, and its associations with levels of amyloid-ß (Aß) and tau in the plasma and cerebrospinal fluid (CSF). METHODS: A cross-sectional study was conducted in a Chinese cohort consisting of 39 cognitively normal controls and 47 patients with AD. The levels of FABP1 in plasma, and Aß and tau in CSF, were measured by enzyme-linked immunosorbent assay (ELISA). A single-molecule array (SIMOA) was used to detect plasma Aß levels. RESULTS: The level of plasma FABP1 was significantly elevated in the AD group (p = 0.0109). Further analysis showed a positive correlation of FABP1 with CSF total tau (t-tau) and phosphorylated tau (p-tau) levels. Besides, plasma FABP1/Aß42 (AUC = 0.6794, p = 0.0071) and FABP1/t-tau (AUC = 0.7168, p = 0.0011) showed fair diagnostic efficacy for AD. When combined with other common AD biomarkers including plasma Aß42, Aß40, and t-tau, both FABP1/Aß42 and FABP1/t-tau showed better diagnostic efficacy than using these biomarkers alone. Among all AUC analyses, the combination of plasma FABP1/t-tau and Aß42 had the highest diagnostic value (AUC = 0.8075, p < 0.0001). CONCLUSION: These findings indicate that FABP1 may play a role in AD pathogenesis and be worthy of further investigation in the future.


Subject(s)
Alzheimer Disease , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Cross-Sectional Studies , Fatty Acid-Binding Proteins , Humans , Liver , Peptide Fragments/cerebrospinal fluid , tau Proteins/cerebrospinal fluid
9.
Mol Neurodegener ; 17(1): 9, 2022 01 15.
Article in English | MEDLINE | ID: mdl-35033164

ABSTRACT

BACKGROUND: Loss of brain capillary pericyte is involved in the pathologies and cognitive deficits in Alzheimer's disease (AD). The role of pericyte in early stage of AD pathogenesis remains unclear. METHODS: We investigated the dynamic changes of soluble platelet-derived growth factor receptor ß (sPDGFRß) in cerebrospinal fluid (CSF), a marker of brain pericyte injury, in transition from normal ageing to early AD in a cognitively unimpaired population aged 20 to 90 years. Association between sPDGFRß and ATN biomarkers were analyzed. RESULTS: In lifetime, CSF sPDGFRß continually increased since age of 20 years, followed by the increases of phosphorylated tau-181 (P-tau181) and total tau (T-tau) at the age of 22.2 years and 31.7 years, respectively; CSF Aß42 began to decline since the age of 39.6 years, indicating Aß deposition. The natural trajectories of biomarkers suggest that pericyte injury is an early event during transition from normal status to AD, even earlier than Aß deposition. In AD spectrum, CSF sPDGFRß was elevated in preclinical stage 2 and participants with suspected non-AD pathophysiologies. Additionally, CSF sPDGFRß was positively associated with P-tau181 and T-tau independently of Aß42, and significantly strengthened the effects of Aß42 on P-tau181, suggesting that pericyte injury accelerates Aß-mediated tau hyperphosphorylation. CONCLUSIONS: Our results suggest that pericyte injury contributes to AD progression in the early stage in an Aß-independent pathway. Recovery of pericyte function would be a target for prevention and early intervention of AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Adult , Aged , Aged, 80 and over , Aging , Alzheimer Disease/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Humans , Middle Aged , Peptide Fragments/cerebrospinal fluid , Young Adult , tau Proteins/cerebrospinal fluid
10.
Neurosci Bull ; 38(3): 290-302, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34611829

ABSTRACT

Deficits in the clearance of amyloid ß protein (Aß) by the peripheral system play a critical role in the pathogenesis of sporadic Alzheimer's disease (AD). Impaired uptake of Aß by dysfunctional monocytes is deemed to be one of the major mechanisms underlying deficient peripheral Aß clearance in AD. In the current study, flow cytometry and biochemical and behavioral techniques were applied to investigate the effects of polysaccharide krestin (PSK) on AD-related pathology in vitro and in vivo. We found that PSK, widely used in therapy for various cancers, has the potential to enhance Aß uptake and intracellular processing by human monocytes in vitro. After administration of PSK by intraperitoneal injection, APP/PS1 mice performed better in behavioral tests, along with reduced Aß deposition, neuroinflammation, neuronal loss, and tau hyperphosphorylation. These results suggest that PSK holds promise as a preventive agent for AD by strengthening the Aß clearance by blood monocytes and alleviating AD-like pathology.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Cognition , Disease Models, Animal , Mice , Mice, Transgenic , Monocytes/metabolism , Monocytes/pathology , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Proteoglycans
11.
Aging Cell ; 21(1): e13533, 2022 01.
Article in English | MEDLINE | ID: mdl-34939734

ABSTRACT

BACKGROUND: A previous study demonstrated that nearly 40%-60% of brain Aß flows out into the peripheral system for clearance. However, where and how circulating Aß is cleared in the periphery remains unclear. The spleen acts as a blood filter and an immune organ. The aim of the present study was to investigate the role of the spleen in the clearance of Aß in the periphery. METHODS: We investigated the physiological clearance of Aß by the spleen and established a mouse model of AD and spleen excision by removing the spleens of APP/PS1 mice to investigate the effect of splenectomy on AD mice. RESULTS: We found that Aß levels in the splenic artery were higher than those in the splenic vein, suggesting that circulating Aß is cleared when blood flows through the spleen. Next, we found that splenic monocytes/macrophages could take up Aß directly in vivo and in vitro. Splenectomy aggravated behaviour deficits, brain Aß burden and AD-related pathologies in AD mice. CONCLUSION: Our study reveals for the first time that the spleen exerts a physiological function of clearing circulating Aß in the periphery. Our study also suggests that splenectomy, which is a routine treatment for splenic rupture and hypersplenism, might accelerate the development of AD.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/adverse effects , Spleen/pathology , Splenectomy/methods , Animals , Disease Models, Animal , Female , Humans , Mice , Mice, Transgenic
12.
Mol Psychiatry ; 26(10): 6074-6082, 2021 10.
Article in English | MEDLINE | ID: mdl-33828237

ABSTRACT

Amyloid-ß (Aß) accumulation in the brain is a pivotal event in the pathogenesis of Alzheimer's disease (AD), and its clearance from the brain is impaired in sporadic AD. Previous studies suggest that approximately half of the Aß produced in the brain is cleared by transport into the periphery. However, the mechanism and pathophysiological significance of peripheral Aß clearance remain largely unknown. The kidney is thought to be responsible for Aß clearance, but direct evidence is lacking. In this study, we investigated the impact of unilateral nephrectomy on the dynamic changes in Aß in the blood and brain in both humans and animals and on behavioural deficits and AD pathologies in animals. Furthermore, the therapeutic effects of the diuretic furosemide on Aß clearance via the kidney were assessed. We detected Aß in the kidneys and urine of both humans and animals and found that the Aß level in the blood of the renal artery was higher than that in the blood of the renal vein. Unilateral nephrectomy increased brain Aß deposition; aggravated AD pathologies, including Tau hyperphosphorylation, glial activation, neuroinflammation, and neuronal loss; and aggravated cognitive deficits in APP/PS1 mice. In addition, chronic furosemide treatment reduced blood and brain Aß levels and attenuated AD pathologies and cognitive deficits in APP/PS1 mice. Our findings demonstrate that the kidney physiologically clears Aß from the blood, suggesting that facilitation of Aß clearance via the kidney represents a novel potential therapeutic approach for AD.


Subject(s)
Alzheimer Disease , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Kidney/metabolism , Mice , Mice, Transgenic , Presenilin-1/metabolism
13.
J Eukaryot Microbiol ; 68(3): e12840, 2021 05.
Article in English | MEDLINE | ID: mdl-33448091

ABSTRACT

A novel genus and species within the order Glissmonadida (Cercozoa, Rhizaria), Saccharomycomorpha psychra n. g., n. sp., is described from lichen in the Ny-Ålesund region (High Arctic) and moss in the Fildes peninsula of King George Island (Maritime Antarctica). Cells were spherical and did not appear to present flagella in organic-rich Potato Dextrose Agar medium where they were able to feed osmotrophically. Molecular phylogenetic analyses based on 18S rRNA gene sequence demonstrated that Saccharomycomorpha psychra belong to "clade T" within the order Glissmonadida (Cercozoa, Rhizaria). All three investigated strains could grow at 4 °C and had an optimum growth temperature of 12 °C, 20 °C, and 20 °C, while a maximum growth temperature of 20 °C, 20 °C, and 25 °C, respectively. In conclusion, we established the phenotypic identity of "clade T," which until now was exclusively detected by environmental sequences, and erect a new family Saccharomycomorphidae for "clade T." Nomenclatural, morphological and ecological aspects of this novel species are discussed.


Subject(s)
Cercozoa , Rhizaria , Antarctic Regions , Cercozoa/genetics , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA
14.
Mol Psychiatry ; 26(10): 5568-5577, 2021 10.
Article in English | MEDLINE | ID: mdl-32681097

ABSTRACT

It is traditionally believed that cerebral amyloid-beta (Aß) deposits are derived from the brain itself in Alzheimer's disease (AD). Peripheral cells such as blood cells also produce Aß. The role of peripherally produced Aß in the pathogenesis of AD remains unknown. In this study, we established a bone marrow transplantation model to investigate the contribution of blood cell-produced Aß to AD pathogenesis. We found that bone marrow cells (BMCs) transplanted from APPswe/PS1dE9 transgenic mice into wild-type (Wt) mice at 3 months of age continuously expressed human Aß in the blood, and caused AD phenotypes including Aß plaques, cerebral amyloid angiopathy (CAA), tau hyperphosphorylation, neuronal degeneration, neuroinflammation, and behavioral deficits in the Wt recipient mice at 12 months after transplantation. Bone marrow reconstitution in APPswe/PS1dE9 mice with Wt-BMCs at 3 months of age reduced blood Aß levels, and alleviated brain Aß burden, neuronal degeneration, neuroinflammation, and behavioral deficits in the AD model mice at 12 months after transplantation. Our study demonstrated that blood cell-produced Aß plays a significant role in AD pathogenesis, and the elimination of peripheral production of Aß can decrease brain Aß deposition and represents a novel therapeutic approach for AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Blood Cells/metabolism , Brain/metabolism , Disease Models, Animal , Mice , Mice, Transgenic
15.
Transl Psychiatry ; 10(1): 423, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33293506

ABSTRACT

Deficits in the clearance of amyloid ß-protein (Aß) play a pivotal role in the pathogenesis of sporadic Alzheimer's disease (AD). The roles of blood monocytes in the development of AD remain unclear. In this study, we sought to investigate the alterations in the Aß phagocytosis function of peripheral monocytes during ageing and in AD patients. A total of 104 cognitively normal participants aged 22-89 years, 24 AD patients, 25 age- and sex-matched cognitively normal (CN) subjects, 15 Parkinson's disease patients (PD), and 15 age- and sex-matched CN subjects were recruited. The Aß uptake by blood monocytes was measured and its alteration during ageing and in AD patients were investigated. Aß1-42 uptake by monocytes decreased during ageing and further decreased in AD but not in PD patients. Aß1-42 uptake by monocytes was associated with Aß1-42 levels in the blood. Among the Aß uptake-related receptors and enzymes, the expression of Toll-like receptor 2 (TLR2) was reduced in monocytes from AD patients. Our findings suggest that monocytes regulate the blood levels of Aß and might be involved in the development of AD. The recovery of the Aß uptake function by blood monocytes represents a potential therapeutic strategy for AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Aging , Humans , Monocytes , Phagocytosis
16.
J Med Internet Res ; 22(9): e21915, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32931444

ABSTRACT

BACKGROUND: The COVID-19 pandemic is associated with common mental health problems. However, evidence for the association between fear of COVID-19 and obsessive-compulsive disorder (OCD) is limited. OBJECTIVE: This study aimed to examine if fear of negative events affects Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) scores in the context of a COVID-19-fear-invoking environment. METHODS: All participants were medical university students and voluntarily completed three surveys via smartphone or computer. Survey 1 was conducted on February 8, 2020, following a 2-week-long quarantine period without classes; survey 2 was conducted on March 25, 2020, when participants had been taking online courses for 2 weeks; and survey 3 was conducted on April 28, 2020, when no new cases had been reported for 2 weeks. The surveys comprised the Y-BOCS and the Zung Self-Rating Anxiety Scale (SAS); additional items included questions on demographics (age, gender, only child vs siblings, enrollment year, major), knowledge of COVID-19, and level of fear pertaining to COVID-19. RESULTS: In survey 1, 11.3% of participants (1519/13,478) scored ≥16 on the Y-BOCS (defined as possible OCD). In surveys 2 and 3, 3.6% (305/8162) and 3.5% (305/8511) of participants had scores indicative of possible OCD, respectively. The Y-BOCS score, anxiety level, quarantine level, and intensity of fear were significantly lower at surveys 2 and 3 than at survey 1 (P<.001 for all). Compared to those with a lower Y-BOCS score (<16), participants with possible OCD expressed greater intensity of fear and had higher SAS standard scores (P<.001). The regression linear analysis indicated that intensity of fear was positively correlated to the rate of possible OCD and the average total scores for the Y-BOCS in each survey (P<.001 for all). Multiple regressions showed that those with a higher intensity of fear, a higher anxiety level, of male gender, with sibling(s), and majoring in a nonmedicine discipline had a greater chance of having a higher Y-BOCS score in all surveys. These results were redemonstrated in the 5827 participants who completed both surveys 1 and 2 and in the 4006 participants who completed all three surveys. Furthermore, in matched participants, the Y-BOCS score was negatively correlated to changes in intensity of fear (r=0.74 for survey 2, P<.001; r=0.63 for survey 3, P=.006). CONCLUSIONS: Our findings indicate that fear of COVID-19 was associated with a greater Y-BOCS score, suggesting that an environment (COVID-19 pandemic) × psychology (fear and/or anxiety) interaction might be involved in OCD and that a fear of negative events might play a role in the etiology of OCD.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/psychology , Health Surveys , Obsessive-Compulsive Disorder/epidemiology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/psychology , Students/psychology , Students/statistics & numerical data , Universities , Adolescent , Adult , Anxiety/epidemiology , Anxiety/psychology , COVID-19 , Fear , Female , Humans , Male , Middle Aged , Obsessive-Compulsive Disorder/psychology , Pandemics , Prospective Studies , Psychiatric Status Rating Scales , Young Adult
17.
Asian J Psychiatr ; 47: 101878, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31756555

ABSTRACT

BACKGROUND: Obsessive-compulsive disorder (OCD) is a severe chronic mental disorder and tends to be refractory to pharmacotherapy or psychotherapy. For treatment-refractory patients, neurosurgical interventions are options. 64 % of OCD patients who undergo neurosurgery still have greater than 16 in the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) after a long-term follow-up. Here, we reported a patient living with long-term OCD (20 years) who was refractory to pharmacotherapy, mindfulness-based psychotherapy, and neurosurgery that injured his bilateral anterior cingulates (AC) and caudate nucleus. METHODS: The patient accepted a novel psychotherapy named cognitive-coping therapy (CCT) and completed Y-BOCS, Hamilton depression rating scale, the Hamilton anxiety rating scale, social and occupational function assessment, and resting-state function magnetic resonance imaging scans (rs-fMRI) before and after 4-week CCT. RESULTS: His Y-BOCS score was reduced from 25 to 4. His depression score and anxiety score were reduced from 19 to 3 and from 12 to 3, respectively. The global assessment of functioning score increased from 32 to 88. CONCLUSIONS: The remission of the patient suggested that CCT could be an alternative intervention for treatment-refractory OCD and those with severe OCD could be cured in short-term.


Subject(s)
Adaptation, Psychological , Cognitive Behavioral Therapy/methods , Obsessive-Compulsive Disorder/therapy , Adult , Humans , Male , Obsessive-Compulsive Disorder/complications , Obsessive-Compulsive Disorder/physiopathology , Remission Induction , Rumination, Cognitive/physiology
18.
Guang Pu Xue Yu Guang Pu Fen Xi ; 37(3): 978-83, 2017 Mar.
Article in Chinese, English | MEDLINE | ID: mdl-30160843

ABSTRACT

The water inrush should been rapidly and accurately identified during preventing coalmine water inrush. The laser induced fluorescent (LIF) spectrum technology provides a new method to identify water inrush with the characteristics of high sensitivity, quick and accurate monitoring. In order to identify water inrush, this paper introduces the spectrum technology of LIF to obtain water inrush fluorescence spectra data. The spectral preprocessing methods of Savitzky-Golay(SG) and Multiplicative Scatter Correction (MSC) have been used to eliminate noise spectra in collecting process. Principal component analysis (PCA) extracts feature information, for SG reprocessing data, when the number of principal component is 3, the cumulative contribution rate can reach 99.76 percent. This method has largely retained the information of original data. This paper chooses the classification model with 3 layers BP neural network, constructing by different training and testing sets. The classification model with SG preprocessing has achieved accurate identification, however, appeared few false identification for MSC and original data. The result shows that SG preprocessing is better than MSC. Research results show that the classification model with PCA and BP neural network can effectively identify coalmine water inrush, and have the strong self-organizing, self-learning ability.

19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(1): 243-7, 2016 Jan.
Article in Chinese | MEDLINE | ID: mdl-27228775

ABSTRACT

Rapid source identification of mine water inrush is of great significance for early warning and prevention in mine water hazard. According to the problem that traditional chemical methods to identify source takes a long time, put forward a method for rapid source identification of mine water inrush with laser induced fluorescence (LIF) technology and soft independent modeling of class analogy (SIMCA) algorithm. Laser induced fluorescence technology has the characteristics of fast analysis, high sensitivity and so on. With the laser assisted, fluorescence spectrums can be collected real-time by the fluorescence spectrometer. According to the fluorescence spectrums, the type of water samples can be identified. If the database is completed, it takes a few seconds for coal mine water source identification, so it is of great significance for early warning and post-disaster relief in coal mine water disaster. The experiment uses 405 nm laser emission laser into the 5 kinds of water inrush samples and get 100 groups of fluorescence spectrum, and then put all fluorescence spectrums into preprocessing. Use 15 group spectrums of each water inrush samples, a total of 75 group spectrums, as the prediction set, the rest of 25 groups spectrums as the test set. Using principal component analysis (PCA) to modeling the 5 kinds of water samples respectively, and then classify the water samples with SIMCA on the basis of the PCA model. It was found that the fluorescence spectrum are obvious different of different water inrush samples. The fluorescence spectrums after preprocessing of Gaussian-Filter, under the condition of the principal component number is 2 and the significant level α = 5%, the accuracy of prediction set and testing set are all 100% with the SIMCA to classify the water inrush samples.

20.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(7): 2234-7, 2016 Jul.
Article in Chinese | MEDLINE | ID: mdl-30035996

ABSTRACT

Rapid identification and classification of mine water inrush is important for flood prevention work underground. This paper proposed a method of KNN combined with PCA identification of water inrush in mine with the laser induced fluorescence spectrum with an immersion probe laser into water samples. The fluorescence spectra of 4 kinds of water samples were obtained. For each set of data preprocessing, the processed data in each sample from 15 sets of data as the training setwith a total of 60 groups. The other 20 groups were used as the prediction set. The data were processed by principal component analysis (PCA), and then the KNN algorithm was used to classify and identify the principal component analysis. During the experiment, the pretreatment method in the principal component number is 2 while the correct rate has reached 100% by KNN classification algorithm.

SELECTION OF CITATIONS
SEARCH DETAIL
...