Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Angew Chem Int Ed Engl ; : e202406738, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869842

ABSTRACT

Supramolecular mechanophores typically exhibit much lower mechanical strengths than covalent counterparts, with strengths usually around 100 pN, which is significantly lower than the nN-scale strength of covalent bonds. Inspired by the slow dissociation kinetics of the cucurbit[7]uril (CB[7])-hexanoate-isoquinoline (HIQ) complex, we discovered that charge-dipole repulsion can be utilized to create strong supramolecular mechanophores. When activated at its -COO- state, the CB[7]-HIQ complex exhibits a high mechanical strength of ~700 pN, comparable to weak covalent bonds such as Au-S bonds or a thiol-maleimide adducts. The strength of the CB[7]-HIQ complex can also be tuned with pH in a gradual manner, with a minimum value of ~150 pN at its -COOH state, similar to an ordinary supramolecular conjugate. This research may pave the way for the development of supramolecular architectures that combine the advantages of covalent and supramolecular systems.

2.
Adv Mater ; : e2403411, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804620

ABSTRACT

Understanding psychology is an important task in modern society which helps predict human behavior and provide feedback accordingly. Monitoring of weak psychological and emotional changes requires bioelectronic devices to be stretchable and compliant for unobtrusive and high-fidelity signal acquisition. Thin conductive polymer film is regarded as an ideal interface; however, it is very challenging to simultaneously balance mechanical robustness and opto-electrical property. Here, a 40 nm-thick film based on photolithographic double-network conductive polymer mediated by graphene layer is reported, which concurrently enables stretchability, conductivity, and conformability. Photolithographic polymer and graphene endow the film photopatternability, enhance stress dissipation capability, as well as improve opto-electrical conductivity (4458 S cm-1@>90% transparency) through molecular rearrangement by π-π interaction, electrostatic interaction, and hydrogen bonding. The film is further applied onto corrugated facial skin, the subtle electromyogram is monitored, and machine learning algorithm is performed to understand complex emotions, indicating the outstanding ability for stretchable and compliant bioelectronics.

3.
ACS Appl Mater Interfaces ; 16(13): 16962-16972, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38520330

ABSTRACT

Typical methods for stable immobilization of proteins often involve time-consuming surface modification of silicon-based materials to enable specific binding, while the nonspecific adsorption method is faster but usually unstable. Herein, we fused a silica-binding protein, Si-tag, to target proteins so that the target proteins could attach directly to silica substrates in a single step, markedly streamlining the immobilization process. The adhesion force between the Si-tag and glass substrates was determined to be approximately 400-600 pN at the single-molecule level by atomic force microscopy, which is greater than the unfolding force of most proteins. The adhesion force of the Si-tag exhibits a slight increase when pulled from the C-terminus compared to that from the N-terminus. Furthermore, the Si-tag's adhesion force on a glass surface is marginally higher than that on a silicon nitride probe. The binding properties of the Si-tag are not obviously affected by environmental factors, including pH, salt concentration, and temperature. In addition, the macroscopic adhesion force between the Si-tag-coated hydrogel and glass substrates was ∼40 times higher than that of unmodified hydrogels. Therefore, the Si-tag, with its strong silica substrate binding ability, provides a useful tool as an excellent fusion tag for the rapid and mechanically robust immobilization of proteins on silica and for the surface coating of silica-binding materials.


Subject(s)
Carrier Proteins , Silicon Dioxide , Silicon Dioxide/chemistry , Spectrum Analysis , Microscopy, Atomic Force , Surface Properties
4.
Front Mol Biosci ; 10: 1234296, 2023.
Article in English | MEDLINE | ID: mdl-37577746

ABSTRACT

Introduction: Familial adenomatous polyposis (FAP) is the second most commonly inherited colorectal cancer (CRC) predisposition caused by germline mutations within the adenomatous polyposis coli (APC) gene. The molecular defects and clinical manifestations of two FAP families were analyzed, and individual prevention strategies suitable for mutation carriers in different families were proposed. Methods and results: The pathogenic gene mutations were identified among the two families using whole-exome sequencing and verified with Sanger sequencing or quantitative polymerase chain reaction (qPCR). One novel (GRCh37:Chr5: 112145676-112174368, del, 28,692 bp) and a known (c.C847T:p.R283X) mutation in the APC gene were pathogenic mutations for FAP, according to the sequencing data and tumorigenesis pattern among the family members. The two mutations led to a premature translational stop signal, synthesizing an absent or disrupted protein product. Conclusion: Our findings expand the known germline mutation spectrum of the APC gene among the Chinese population. This reaffirms the importance of genetic testing in FAP. Genetic consultation and regular follow-ups are necessary for the individualized treatment of cancer-afflicted families with APC expression deficiency. Additional work is required to develop safe and effective chemotherapy and immunotherapy for FAP based on the mutation type.

5.
Nano Lett ; 23(1): 371-379, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36441573

ABSTRACT

Antibacterial amphiphiles normally kill bacteria by destroying the bacterial membrane. Whether and how antibacterial amphiphiles alter normal cell membrane and lead to subsequent effects on pathogen invasion into cells have been scarcely promulgated. Herein, by taking four antibacterial gemini amphiphiles with different spacer groups to modulate cell-mimic phospholipid giant unilamellar vesicles (GUVs), bacteria adhesion on the modified GUVs surface and bacteria engulfment process by the GUVs are clearly captured by confocal laser scanning microscopy. Further characterization shows that the enhanced cationic surface charge of GUVs by the amphiphiles determines the bacteria adhesion amount, while the involvement of amphiphile in GUVs results in looser molecular arrangement and concomitant higher fluidity in the bilayer membranes, facilitating the bacteria intruding into GUVs. This study sheds new light on the effect of amphiphiles on membrane bilayer and the concurrent effect on pathogen invasion into cell mimics and broadens the nonprotein-mediated endocytosis pathway for live bacteria.


Subject(s)
Bacterial Adhesion , Membrane Fluidity , Phospholipids , Unilamellar Liposomes , Bacteria/metabolism , Anti-Bacterial Agents/pharmacology
6.
J Med Virol ; 95(1): e28281, 2023 01.
Article in English | MEDLINE | ID: mdl-36329614

ABSTRACT

Breast milk has been found to inhibit coronavirus infection, while the key components and mechanisms are unknown. We aimed to determine the components that contribute to the antiviral effects of breastmilk and explore their potential mechanism. Lactoferrin (Lf) and milk fat globule membrane inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related coronavirus GX_P2V and transcription- and replication-competent SARS-CoV-2 virus-like particles in vitro and block viral entry into cells. We confirmed that bovine Lf (bLf) blocked the binding between human angiotensin-converting enzyme 2 and SARS-CoV-2 spike protein by combining receptor-binding domain (RBD). Importantly, bLf inhibited RNA-dependent RNA polymerase (RdRp) activity of both SARS-CoV-2 and SARS-CoV in vitro in the nanomolar range. So far, no biological macromolecules have been reported to inhibit coronavirus RdRp. Our result indicated that bLf plays a major role in inhibiting viral replication. bLf treatment reduced viral load in lungs and tracheae and alleviated pathological damage. Our study provides evidence that bLf prevents SARS-CoV-2 infection by combining SARS-CoV-2 spike protein RBD and inhibiting coronaviruses' RdRp activity, and may be a promising candidate for the treatment of coronavirus disease 2019.


Subject(s)
COVID-19 , SARS-CoV-2 , Female , Humans , Cricetinae , SARS-CoV-2/metabolism , Lactoferrin/pharmacology , Lactoferrin/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , RNA-Dependent RNA Polymerase/metabolism
7.
ACS Nano ; 16(9): 13783-13799, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36099446

ABSTRACT

Anticancer peptides are promising drug candidates for cancer treatment, but the short circulation time and low delivery efficiency limit their clinical applications. Herein, we designed several lasso-like self-assembling anticancer peptides (LASAPs) integrated with multiple functions by a computer-aided approach. Among these LASAPs, LASAP1 (CRGDKGPDCGKAFRRFLGALFKALSHLL, 1-9 disulfide bond) was determined to be superior to the others because it can self-assemble into homogeneous nanoparticles and exhibits improved stability in serum. Thus, LASAP1 was chosen for proving the design idea. LASAP1 can self-assemble into nanoparticles displaying iRGD on the surface because of its amphiphilic structure and accumulate to the tumor site after injection because of the EPR effect and iRGD targeting to αVß3 integrin. The nanoparticles could disassemble in the acidic microenvironment of the solid tumor, and cleaved by the overexpressed hK2, which was secreted by prostate tumor cells, to release the effector peptide PTP-7b (FLGALFKALSHLL), which was further activated by the acidic pH. Therefore, LASAP1 could target the orthotopic prostate tumor in the model mice after intraperitoneal injection and specifically inhibit tumor growth, with low systematic toxicity. Combining the multiple targeting functions, LASAP1 represents a promising design of self-delivery of peptide drugs for targeted cancer treatments.


Subject(s)
Antineoplastic Agents , Nanoparticles , Prostatic Neoplasms , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Computer-Aided Design , Disulfides , Drug Delivery Systems , Humans , Integrins , Male , Mice , Nanoparticles/chemistry , Peptides/chemistry , Prostatic Neoplasms/drug therapy , Tumor Microenvironment
8.
Eur J Pharm Biopharm ; 179: 137-146, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36096399

ABSTRACT

Water insolubility poses a significant challenge in the clinical applications of many small molecule drugs. To improve the drug delivery efficiency, two branched amphiphilic peptides (BAPs) were designed in a computer-aided manner, for drug-loading through peptide self-assembling. The structures of the two BAPs, bis(LVFFA)-K-RGD (PepV-1) and bis(FHF)-K-RGD (PepV-2), were inspired by phospholipids, containing the RGD sequence as the hydrophilic head and two hydrophobic sequences as the hydrophobic tails. PepV-1 could self-assemble into nano-fibrils with a hydrophobic core and the RGD moiety on the surface. Its drug-loading efficiency (DE%) of three small molecule anticancer drugs (doxorubicin, camptothecin and curcumin) ranged from 9.90% to 11.74%, and entrapment efficiency (EE%) ranged from 37.30% to 43.00%. Pep-V2 could self-assemble into bilayer delimited nano-vesicles. The DE% of PepV-2 for these drugs ranged from 15.87% to 18.55%, and the EE% ranged from 60.45% to 73.23%. Both BAP carriers could prolong the release of the small molecule drugs, and the PepV-2 vesicles also showed pH-triggered increase of drug release due to the histidine residues. Bothe BAP carriers could increase the cytotoxicity against cancer cells, which might be due to the targeting on the cancer overexpressed integrins. The designed BAP carriers represent promising functional drug carriers for targeted drug delivery, and will be useful for improving the clinical use of small molecule drugs, especially for those with poor water solubility.


Subject(s)
Antineoplastic Agents , Curcumin , Antineoplastic Agents/chemistry , Camptothecin , Doxorubicin/chemistry , Drug Carriers/chemistry , Histidine , Hydrophobic and Hydrophilic Interactions , Integrins , Oligopeptides , Peptides/chemistry , Water/chemistry
9.
Emerg Microbes Infect ; 11(1): 2658-2669, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36153659

ABSTRACT

The binding of the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein onto human angiotensin-converting enzyme 2 (ACE2) is considered as the first step for the virus to adhere onto the host cells during the infection. Here, we investigated the adhesion of spike proteins from different variants and ACE2 using single-molecule and single-cell force spectroscopy. We found that the unbinding force and binding probability of the spike protein from Delta variant to the ACE2 were the highest among the variants tested in our study at both single-molecule and single-cell levels. As the most popular variants, the Omicron variants have slightly higher unbinding force to the ACE2 than wild type. Molecular dynamics simulation showed that ACE2-RBD (Omicron BA.1) complex is destabilized by the E484A and Y505H mutations and stabilized by S477N and N501Y mutations, when compared with Delta variant. In addition, a neutralizing antibody, produced by immunization with wild type spike protein, could effectively inhibit the binding of spike proteins from wild type, Delta and Omicron variants (BA.1 and BA.5) onto ACE2. Our results provide new insight for the molecular mechanism of the adhesive interactions between spike protein and ACE2 and suggest that effective monoclonal antibody can be prepared using wild type spike protein against different variants.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Mutation
10.
PLoS Pathog ; 18(7): e1010660, 2022 07.
Article in English | MEDLINE | ID: mdl-35816513

ABSTRACT

Coxiella burnetii is the etiological agent of the zoonotic disease Q fever, which is featured by its ability to replicate in acid vacuoles resembling the lysosomal network. One key virulence determinant of C. burnetii is the Dot/Icm system that transfers more than 150 effector proteins into host cells. These effectors function to construct the lysosome-like compartment permissive for bacterial replication, but the functions of most of these effectors remain elusive. In this study, we used an affinity tag purification mass spectrometry (AP-MS) approach to generate a C. burnetii-human protein-protein interaction (PPI) map involving 53 C. burnetii effectors and 3480 host proteins. This PPI map revealed that the C. burnetii effector CBU0425 (designated CirB) interacts with most subunits of the 20S core proteasome. We found that ectopically expressed CirB inhibits hydrolytic activity of the proteasome. In addition, overexpression of CirB in C. burnetii caused dramatic inhibition of proteasome activity in host cells, while knocking down CirB expression alleviated such inhibitory effects. Moreover, we showed that a region of CirB that spans residues 91-120 binds to the proteasome subunit PSMB5 (beta 5). Finally, PSMB5 knockdown promotes C. burnetii virulence, highlighting the importance of proteasome activity modulation during the course of C. burnetii infection.


Subject(s)
Coxiella burnetii , Q Fever , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Host-Pathogen Interactions , Humans , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Interaction Maps , Q Fever/metabolism , Vacuoles/metabolism
11.
Eur J Nucl Med Mol Imaging ; 49(5): 1470-1481, 2022 04.
Article in English | MEDLINE | ID: mdl-34677626

ABSTRACT

PURPOSE: Abnormal CD38 expression in some hematologic malignancies, including lymphoma, has made it a biomarker for targeted therapies. Daratumumab (Dara) is the first FDA-approved CD38-specific monoclonal antibody, enabling successfully immunoPET imaging over the past years. Radiolabeled Dara however has a long blood circulation and delayed tumor uptake which can limit its applications. The focus of this study is to develop 64Cu-labeled Dara-F(ab')2 for the visualization of CD38 in lymphoma models. METHODS: F(ab')2 fragment was prepared from Dara using an IdeS enzyme and purified with Protein A beads. Western blotting, flow cytometry, and surface plasmon resonance (SPR) were performed for in vitro assay. Probes were labeled with 64Cu after the chelation of 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). Small animal PET imaging and quantitative analysis were performed after injection of 64Cu-labeled Dara-F(ab')2, IgG-F(ab')2, and Dara for evaluation in lymphoma models. RESULTS: Flow cytometry and SPR assay proved the specific binding ability of Dara-F(ab')2 and NOTA-Dara-F(ab')2 in vitro. Radiolabeling yield of [64Cu]Cu-NOTA-Dara-F(ab')2 was over 90% and with a specific activity of 4.0 ± 0.6 × 103 MBq/µmol (n = 5). PET imaging showed [64Cu]Cu-NOTA-Dara-F(ab')2 had a rapid and high tumor uptake as early as 2 h (6.9 ± 1.2%ID/g) and peaked (9.5 ± 0.7%ID/g) at 12 h, whereas [64Cu]Cu-NOTA-Dara reached its tumor uptake peaked at 48 h (8.3 ± 1.4%ID/g, n = 4). In comparison, IgG-F(ab')2 and HBL-1 control groups found no noticeable tumor uptake. [64Cu]Cu-NOTA-Dara-F(ab')2 had significantly lower uptake in blood pool, bone, and muscle than [64Cu]Cu-NOTA-Dara and its tumor-to-blood and tumor-to-muscle ratios were significantly higher than controls. CONCLUSIONS: [64Cu]Cu-NOTA-Dara-F(ab')2 showed a rapid and high tumor uptake in CD38-positive lymphoma models with favorable imaging contrast, showing its promise as a potential PET imaging agent for future clinical applications.


Subject(s)
Antibodies, Monoclonal , Lymphoma , Animals , Cell Line, Tumor , Humans , Immunoglobulin Fab Fragments/metabolism , Immunoglobulin G , Lymphoma/diagnostic imaging , Positron-Emission Tomography/methods
12.
Mater Horiz ; 8(3): 1047-1057, 2021 03 01.
Article in English | MEDLINE | ID: mdl-34821335

ABSTRACT

The capability to accurately monitor electrophysiological signals and instantly provide feedback to users is crucial for wearable healthcare. However, commercial gel electrodes suffer from drying out and irritation on skin with time, severely affecting signal quality for practical use. Toward a gel-free electrophysiology, epidermal electrodes that can accurately detect biosignals and simultaneously achieve the multifunctional properties of on-skin electronics needs are highly desirable. In this work, inspired by Lamellibranchia, which can adhere tightly to various surfaces using their extensible, adhesive and self-healing byssal threads, we developed a gel-free epidermal electrode to acquire high-quality electrophysiological signals based on a novel polymer substrate design. This polymer (STAR) features extreme stretchability (>2300% strain), high transparency (>90% transmittance at λ = 550 nm), gentle adhesion (adhesion strengths: tens of kPa), and rapid self-healing ability (95% healing efficiency in 10 min). Combined with silver nanowires as conductors, STAR was employed as a self-healing, stretchable and adhesive epidermal electrode for electrophysiological signal recording, showing a signal-to-noise ratio (SNR) even higher than that of commercial electrodes, and being able to control an artificial limb as an intermediate for human-machine interface. We believe our Lamellibranchia inspired STAR will pave a new way to design multifunctional polymers for epidermal electronics, accelerating the development of emerging wearable healthcare.


Subject(s)
Epidermis , Nanowires , Cardiac Electrophysiology , Electrodes , Humans , Polymers
13.
Nat Commun ; 12(1): 4880, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34385444

ABSTRACT

Accurate and imperceptible monitoring of electrophysiological signals is of primary importance for wearable healthcare. Stiff and bulky pregelled electrodes are now commonly used in clinical diagnosis, causing severe discomfort to users for long-time using as well as artifact signals in motion. Here, we report a ~100 nm ultra-thin dry epidermal electrode that is able to conformably adhere to skin and accurately measure electrophysiological signals. It showed low sheet resistance (~24 Ω/sq, 4142 S/cm), high transparency, and mechano-electrical stability. The enhanced optoelectronic performance was due to the synergistic effect between graphene and poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), which induced a high degree of molecular ordering on PEDOT and charge transfer on graphene by strong π-π interaction. Together with ultra-thin nature, this dry epidermal electrode is able to accurately monitor electrophysiological signals such as facial skin and brain activity with low-motion artifact, enabling human-machine interfacing and long-time mental/physical health monitoring.


Subject(s)
Electrodes , Electrophysiology/methods , Epidermis/physiology , Equipment Design/methods , Monitoring, Physiologic/methods , Wearable Electronic Devices , Artifacts , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Electric Conductivity , Electrophysiology/instrumentation , Electrophysiology/standards , Equipment Design/standards , Graphite/chemistry , Humans , Molecular Structure , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/standards , Motion , Polymers/chemistry , Polystyrenes/chemistry , Skin
15.
World J Surg Oncol ; 19(1): 226, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34330293

ABSTRACT

BACKGROUND: To investigate long-chain noncoding TM4SF1-AS1 in gastric cancer (GC) tissues and cells. METHODS: TM4SF1-AS1 in 40 GC tissues and adjacent tissues was detected and compared using real-time fluorescence quantitative PCR (qRT-PCR). TM4SF1-AS1 in MKN28 and SGC7901 GC cells was downregulated using small interfering RNA (shRNA). The cells were grouped into an interference group (shTM4SF1-AS1 group) and a control group (shControl group). MTT and Transwell tests were applied to determine the proliferation and invasion of the cells in both groups, and flow cytometry was performed to assess the apoptosis rate in the two groups. Western blotting was performed to determine changes in key proteins in cells during the epithelial-to-mesenchymal transition (EMT) and in the TM4SF1 and PI3K-AKT signalling pathways in response to the downregulation of TM4SF1-AS1. RESULTS: The proliferation of MKN28 and SGC7901 in the shTM4SF1-AS1 group was significantly inhibited at 48 h and 72 h compared to that in the shControl group (all P < 0.05). In the shTM4SF1-AS1 group, the number of invaded MKN28 and SGC7901 cells was significantly lower than that in the shControl group (all P < 0.05). Apoptosis in the MKN28 and SGC7901 shTM4SF1-AS1 groups was significantly higher than that in the shControl group (all P < 0.05). Compared to those in the shControl group, levels of E-cadherin in EMT-related proteins were significantly elevated (P < 0.01), while levels of N-cadherin, Snail and Twist1 were significantly decreased (all P < 0.01). After silencing the expression of LncTM4SF1-AS1, the expression levels of TM4SF1 in the shTM4SF1-AS1 group were downregulated compared to those in the shControl group, and the p-PI3K and p-AKT proteins in the PI3K-AKT signalling pathway in the shTM4SF1-AS1 group were downregulated compared to those of the shControl group. CONCLUSIONS: TM4SF1-AS1 is upregulated in gastric cancer tissues and cells. Interfering with and downregulating its expression inhibit cancer cell proliferation, invasion and the EMT and promote apoptosis. The underlying mechanism for these effects is related to silencing the TM4SF1 and PI3K-AKT signalling pathways. TM4SF1-AS1 may be a potential therapeutic target for gastric cancer.


Subject(s)
RNA, Long Noncoding , Stomach Neoplasms , Antigens, Surface , Apoptosis , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Proteins/genetics , Phosphatidylinositol 3-Kinases/genetics , Prognosis , RNA, Long Noncoding/genetics , Stomach Neoplasms/genetics
16.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: mdl-34180984

ABSTRACT

Targeting the interaction between severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2)-receptor-binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2) is believed to be an effective strategy for drug design to inhibit the infection of SARS-CoV-2. Herein, several ultrashort peptidase inhibitors against the RBD-ACE2 interaction were obtained by a computer-aided approach based on the RBD-binding residues on the protease domain (PD) of ACE2. The designed peptides were tested on a model coronavirus GX_P2V, which has 92.2 and 86% amino acid identity to the SARS-CoV-2 spike protein and RBD, respectively. Molecular dynamics simulations and binding free energy analysis predicted a potential binding pocket on the RBD of the spike protein, and this was confirmed by the specifically designed peptides SI5α and SI5α-b. They have only seven residues, showing potent antiviral activity and low cytotoxicity. Enzyme-linked immunosorbent assay result also confirmed their inhibitory ability against the RBD-ACE2 interaction. The ultrashort peptides are promising precursor molecules for the drug development of Corona Virus Disease 2019, and the novel binding pocket on the RBD may be helpful for the design of RBD inhibitors or antibodies against SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , COVID-19 Drug Treatment , Peptides/chemistry , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Antiviral Agents/chemistry , Binding Sites/drug effects , COVID-19/genetics , COVID-19/virology , Drug Design , Humans , Molecular Dynamics Simulation , Peptides/genetics , Peptides/therapeutic use , Protein Binding/drug effects , Protein Domains/drug effects , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
17.
J Mol Graph Model ; 106: 107938, 2021 07.
Article in English | MEDLINE | ID: mdl-34020229

ABSTRACT

Syndecans (SDCs) are a family of four members of integral membrane proteins, which play important roles in cell-cell interactions. Dimerization/oligomerization generated by transmembrane domains (TMDs) appears to crucially regulate several functional behaviors of all syndecan members. The different levels of protein-protein interactions mediated by Syndecan TMDs may lead to a rather complicated function of Syndecans. The molecular mechanism of the different dimerization tendencies in each type of SDCs remains unclear. Here, the self-assembly process of syndecan TMD homodimers and heterodimers was studied in molecular details by molecular dynamics simulations. Our computational results showed that the SDC2 forms the most stable homodimer, which is consistent with previous experimental results. Detailed analysis suggests that instead of the conserved dimerizing motif G8XXXG12 in all four SDCs involved in homo- and hetero-dimerization of SDCs. The different locations of GXXXA motif affect the stability of SDC dimers. In addition, we found that A3XXXA7 can stabilize the dimerization, making the dimer of SDC2 the most stable among these SDC dimers. Our results shed light on the complex effect of multiple dimerizing motifs on the dimerization of transmembrane domains.


Subject(s)
Syndecans , Amino Acid Sequence , Dimerization , Protein Domains , Protein Structure, Tertiary
18.
Hepatol Int ; 15(1): 155-165, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33385299

ABSTRACT

BACKGROUND AND AIMS: Rifaximin has been recommended as a prophylactic drug for hepatic encephalopathy (HE) and spontaneous bacterial peritonitis (SBP). This study aims to explore whether low-dose rifaximin can prevent overall complications and prolong survival in cirrhotic patients. METHODS: In this multi-centre randomized open-labelled prospective study, 200 patients with decompensated cirrhosis were randomly assigned at a ratio of 1:1. Patients in rifaximin group were administered 400 mg rifaximin twice daily for 6 months, and all other therapeutic strategies were kept unchanged in both groups as long as possible. The primary efficacy endpoints were the incidence of overall complications and liver transplantation-free survival. The secondary endspoints were the incidence of each major cirrhosis-related complication, as well as the Child-Pugh score and class. RESULTS: The major baseline characteristics were similar in the two groups except for HE. The cumulative incidence and frequency of overall complications were significantly lower in rifaximin group than in the control group (p < 0.001). Though liver transplantation-free survival was not significantly different between the two groups, subgroup analysis showed rifaximin markedly prolonged liver transplantation-free survival in patients with Child-Pugh score ≥ 9 (p = 0.007). Moreover, rifaximin markedly reduced the episodes of ascites exacerbation (p < 0.001), HE (p < 0.001) and gastric variceal bleeding (EGVB, p = 0.031). The incidence of adverse events was similar in the two groups. CONCLUSION: Low-dose rifaximin significantly decreases the occurrence of overall complications, leading to prolonged survival in patients with advanced stages of cirrhosis in this trail. Further study should be carried out to compare the effect of this low-dose rifaximin with normal dose (1200 mg/day) rifaximin in preventing cirrhosis-related complications. CLINICAL TRIAL NUMBER: NCT02190357.


Subject(s)
Esophageal and Gastric Varices , Liver Cirrhosis , Rifaximin/therapeutic use , Gastrointestinal Hemorrhage , Hepatic Encephalopathy/etiology , Hepatic Encephalopathy/prevention & control , Humans , Liver Cirrhosis/complications , Pharmaceutical Preparations , Prospective Studies
19.
Infect Dis Ther ; 10(1): 241-252, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33111216

ABSTRACT

INTRODUCTION: This study aimed to analyze the diversity of intestinal flora in patients with chronic hepatitis B (CHB) and investigate the effect of entecavir on the intestinal flora in these patients. METHODS: Thirty patients with CHB and 30 healthy controls were recruited from the Department of Infectious Diseases and Department of Gastroenterology of Shanghai Tongji Hospital between January 2017 and December 2018. Stool samples were collected for the detection of intestinal flora by high-throughput sequencing. Patients with CHB received antivirus therapy with entecavir for 8 weeks. The biochemical and virological responses were assessed and the intestinal flora were compared. RESULTS: After entecavir treatment, the blood levels of alanine aminotransferase (ALT), interleukin-6 (IL-6), IL-8, tumor necrosis factor (TNF), and hepatitis B virus (HBV) DNA reduced significantly in patients with CHB and the species abundance of intestinal flora increased markedly. In patients with CHB, the unique genera included Butyrivibrio, Phaseolus acutifolius, and Prevotellaceae NK3B31 group before treatment and Howardella, Candidatus Stoquefichus, Citrobacter, Dysgonomonas, Faecalicoccus, Methanobrevibacter, Mitsuokella, Mobilitalea, Succinivibrio, Gluconobacter, and Plesiomonas after treatment. The abundance of the following genera increased significantly after entecavir treatment in patients with CHB: Clostridium sensu stricto 1, Erysipelotrichaceae UCG-007, and Intestinibacter. The abundance of Streptococcus, Atopobium, and Murdochiella reduced markedly after entecavir treatment in patients with CHB. CONCLUSION: After 8-week entecavir treatment, the blood biochemical, immunological, and virological responses improved significantly, the species abundance of intestinal flora increased markedly, and there were unique genera in patients with CHB before and after treatment.

20.
Front Chem ; 8: 600918, 2020.
Article in English | MEDLINE | ID: mdl-33330393

ABSTRACT

Many proteins and peptides have been identified to effectively and specifically bind on certain surfaces such as silica, polystyrene and titanium dioxide. It is of great interest, in many areas such as enzyme immobilization, surface functionalization and nanotechnology, to understand how these proteins/peptides bind to solid surfaces. Here we use single-molecule force spectroscopy (SMFS) based on atomic force microscopy to directly measure the adhesion force between a silica-binding peptide SB7 and glass surface at single molecule level. SMFS results show that the adhesion force of a single SB7 detaching from the glass surface distributes in two populations at ~220 pN and 610 pN, which is higher than the unfolding forces of most mechanically stable proteins and the unbinding forces of most stable protein-protein interactions. Molecular dynamics simulation reveals that the electrostatic interactions between positively charged arginine residues and the silica surface dominates the binding of SB7 on silica. Our study provides experimental evidence and molecular mechanism at the single-molecule level for the SB7-based immobilization of proteins on silica-based surface, which is able to withstand high mechanical forces, making it an ideal fusion tag for silica surface immobilization or peptide-base adhesive materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...