Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Hazard Mater ; 416: 125781, 2021 08 15.
Article in English | MEDLINE | ID: mdl-33873030

ABSTRACT

Hexavalent chromium (Cr(VI)) mobility, reactivity and bioavailability in the acid mine drainage (AMD) are restricted by adsorption reactions on schwertmannite. However, the Cr(VI) adsorption mechanisms remain unclear. In this study, batch adsorption/desorption experiments, X-ray photoelectron spectroscopy (XPS), and in‒situ attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) in combination with a multivariate curve resolution- alternating least squares (MCR-ALS) analysis were employed to characterize Cr(VI) adsorption on schwertmannite. The results of batch experiments suggested that two kinds of anion exchange reactions occurred on Sch surface: the outer-sphere complexes and the inner-sphere complexes of sulfate were successively substituted by aqueous Cr(VI) to form inner-sphere complexes. XPS analysis showed that the adsorbed Cr (VI) tended to exchange with sulfate rather than with surface hydroxyl groups on schwertmannite. In-situ ATR-FTIR spectroscopic results confirmed that the Cr(VI) coordination species contained bidentate inner-sphere (C2ν) and monodentate inner-sphere complexes (C3ν). MCR-ALS analysis revealed that monodentate complexes were dominant at pH 5.0-8.0. The proportion of bidentate complexes decreased from 47% to 25% when pH increased from 5.0 to 8.0. Thus, we concluded that a transition occurred between bidentate to monodentate complexes. In addition, the Cr(VI) concentration exerted little influence on the change of surface complexes.


Subject(s)
Chromium , Iron Compounds , Adsorption , Hydrogen-Ion Concentration , Spectroscopy, Fourier Transform Infrared
2.
Ecotoxicol Environ Saf ; 202: 110921, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32800256

ABSTRACT

Jarosite is one of the iron oxyhydroxysulfate minerals that are commonly found in acid mine drainage (AMD) systems. In natural environments, phosphate and sulfate reducing bacteria (SRB) may be coupled to jarosite reduction and transformation. In this research, the effect of phosphate on jarosite reduction by SRB and the associated secondary mineral formation was studied using batch experiments. The results indicated that Fe3+ is mainly reduced by biogenic S2- in this experiment. The effect of PO43- on jarosite reduction by SRB involved not only a physico-chemical factor but also a microbial factor. Phosphate is an essential nutrient, which can support the activity of SRB. In the low PO43- treatment, the production of total Fe2+ was found to be slightly larger than that in the zero PO43- treatment. Sorption of PO43- effectively elevated jarosite stability via the formation of inner sphere complexes, which, therefore, inhibited the reductive dissolution of jarosite. At the end of the experiment, the amounts of total Fe2+ accumulation were determined to be 4.54 ± 0.17a mM, 4.66 ± 0.22a mM, 3.91 ± 0.04b mM and 2.51 ± 0.10c mM (p < 0.05) in the zero, low, medium and high PO43- treatments, respectively, following the order of low PO43- treatment > zero PO43- treatment > medium PO43- treatment > high PO43- treatment. PO43- loading modified the transformation pathways for the jarosite mineral, as well. In the zero PO43- treatment, the jarosite diffraction lines disappeared, and mackinawite dominated at the end of the experiment. Compared to PO43--free conditions, vivianite was found to become increasingly important at higher PO43- loading conditions. These findings indicate that PO43- loading can influence the broader biogeochemical functioning of AMD systems by impacting the reactivity and mineralization of jarosite mineral.


Subject(s)
Bacteria/metabolism , Ferric Compounds/chemistry , Phosphates/chemistry , Sulfates/chemistry , Adsorption , Biodegradation, Environmental , Ferrous Compounds , Iron/chemistry , Iron Compounds/chemistry , Minerals , Mining , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...