Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-18024189

ABSTRACT

A new fluorescent chemosensor for sensing Co(II) using di(2-picolyl)amino (DPA) as a recognition group and quinazoline as a reporting group has been synthesized and characterized. The quinazoline derivative contains an intramolecular hydrogen bond, which would undergo excited-state intramolecular proton transfer (ESIPT) at illumination. The fluorescence quenching is attributed to cation-induced inhibition of ESIPT, which constitutes the basis for the determination of Co(II) with the prepared chemosensor. The fluorophore forms 1:1 cobalt(II) complex with the logarithm of apparent dissociation constant log K(a)=6.8. The analytical performance characteristics of the proposed Co(II)-sensitive sensor were investigated. The chemosensor exhibits a linear response toward Co(II) in the concentration range 3.2 x 10(-8) to 1.4 x 10(-6) M, with a working pH range from 7.0 to 9.5 and high selectivity.


Subject(s)
Cobalt/chemistry , Protons , Quinazolines/chemistry , Quinazolines/chemical synthesis , Hydrogen-Ion Concentration , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
2.
Anal Sci ; 22(12): 1547-51, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17159313

ABSTRACT

In this research, bis(2,2'-bipyridine)(4-methyl-2,2'-bipyridine-4'-carboxylic acid)ruthenium(II).2PF(6)- complex (1), was first used as a fluorescent chemosensor to recognize Cu(II) in EtOH/H(2)O (1:1, v/v) solution. The response of the sensor is based on the fluorescence quenching of complex 1 by binding with Cu(II). The analytical performance characteristics of the proposed Cu(II)-sensitive chemosensor were investigated. The sensor can be applied to the quantification of Cu(II) with a linear range covering from 5.0 x 10(-8) to 1.0 x 10(-4) M and a detection limit of 4.2 x 10(-8) M. The experiment results show that the response behavior of 1 to Cu(II) is pH independent in medium condition (pH 4.0 - 8.0), and show excellent selectivity for Cu(II) over other transition metal cations.


Subject(s)
Copper/analysis , Fluorescent Dyes/chemistry , Ruthenium Compounds , 2,2'-Dipyridyl , Carboxylic Acids , Hydrogen-Ion Concentration
3.
Talanta ; 70(2): 364-9, 2006 Sep 15.
Article in English | MEDLINE | ID: mdl-18970776

ABSTRACT

A fluorescent chemical sensor for Hg(II) using 5,10,15-tris(pentafluorophenyl)corrole (H(3)(tpfc)) as fluorophore is described in this paper. The response of the sensor is based on the fluorescence quenching of H(3)(tpfc) by coordination with Hg(II). H(3)(tpfc) based sensor shows a linear response towards Hg(II) in the concentration range from 1.2x10(-7) to 1.0x10(-4)M, with a working pH range from 5.0 to 8.0. The response time for Hg(II) concentration

SELECTION OF CITATIONS
SEARCH DETAIL
...