Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
Chin Herb Med ; 16(2): 180-189, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38706829

ABSTRACT

Rhizosphere microorganisms, as one of the most important components of the soil microbiota and plant holobiont, play a key role in the medicinal plant-soil ecosystem, which are closely related to the growth, adaptability, nutrient absorption, stress tolerance and pathogen resistance of host plants. In recent years, with the wide application of molecular biology and omics technologies, the outcomes of rhizosphere microorganisms on the health, biomass production and secondary metabolite biosynthesis of medicinal plants have received extensive attention. However, whether or to what extent rhizosphere microorganisms can contribute to the construction of the quality evaluation system of Chinese medicinal materials is still elusive. Based on the significant role of rhizosphere microbes in the survival and quality formation of medicinal plants, this paper proposed a new concept of rhizosphere microbial markers (micro-markers), expounded the relevant research methods and ideas of applying the new concept, highlighted the importance of micro-markers in the quality evaluation and control system of traditional Chinese medicines (TCMs), and introduced the potential value in soil environmental assessment, plant pest control and quality assessment of TCMs. It provides reference for developing ecological planting of TCMs and ensuring the production of high quality TCMs by regulating rhizosphere microbial communities.

2.
Angew Chem Int Ed Engl ; : e202401238, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651232

ABSTRACT

Emerging high entropy compounds (HECs) have attracted huge attention in electrochemical energy-related applications. The features of ultrafine size and carbon incorporation show great potential to boost the ion-storage kinetics of HECs. However, they are rarely reported because high-temperature calcination tends to result in larger crystallites, phase separation, and carbon reduction. Herein, using the NaCl self-assembly template method, by introducing a high-pressure field in the calcination process, the atom diffusion and phase separation are inhibited for the general formation of HECs, and the HEC aggregation is inhibited for obtaining ultrafine size. The general preparation of ultrafine-sized (<10 nm) HECs (nitrides, oxides, sulfides, and phosphates) anchored on porous carbon composites is realized. They are demonstrated by combining advanced characterization technologies with theoretical computations. Ultrafine-sized high entropy sulfides-MnFeCoCuSnMo/porous carbon (HES-MnFeCoCuSnMo/PC) as representative anodes exhibit excellent sodium-ion storage kinetics and capacities (a high rating capacity of 278 mAh g-1 at 10 A g-1 for full cell and a high cycling capacity of 281 mAh g-1 at 20 A g-1 after 6000 cycles for half cell) due to the combining advantages of high entropy effect, ultrafine size, and PC incorporation. Our work provides a new opportunity for designing and fabricating ultrafine-sized HECs.

3.
Nat Mater ; 23(6): 747-754, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38671162

ABSTRACT

Oxided-dispersion-strengthened (ODS) alloys are promising high-strength materials used in extreme environments such as high-temperature and radiation tolerance applications. Until now, ODS alloys have been developed for reducible metals by chemical processing methods, but there are no commercially available ODS alloys for unreducible metals, namely, Al, Mg, Ti, Zr and so on, owing to the challenge of uniformly dispersing oxide particles in these alloys by traditional techniques. Here we present a strategy to achieve ODS Al alloys containing highly dispersive 5 nm MgO nanoparticles by powder metallurgy, using nanoparticles that have in situ-grown graphene-like coatings and hence largely reduced surface energy. Notably, the densely dispersed MgO nanoparticles, which have a fully coherent relationship with an Al matrix, show effective suppression of interfacial vacancy diffusion, thus leading to unprecedented strength (~200 MPa) and creep resistance at temperatures as high as 500 °C. Our processing approach should enable the dispersion of ultrafine nanoparticles in a wide range of alloys for high-temperature-related applications.

4.
Nanoscale ; 16(17): 8307-8316, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38568749

ABSTRACT

Efficiency is paramount in enhancing the performance and cost-effectiveness of solar cells. Recent advancements in single-junction perovskite solar cells (PSCs) have yielded an impressive efficiency of 26.1%, nearing their theoretical limit. Meanwhile, multi-junction tandem solar cells exhibit a remarkable efficiency potential exceeding 42%, surpassing the 33% limit of single-junction cells, thereby opening avenues for ultra-high-efficiency solar cells. Tandem solar cells (TSCs) represent a groundbreaking photovoltaic technology, offering high efficiency, low cost, and a simple fabrication process. Among various TSCs, perovskite-organic TSCs (PO TSCs) are particularly promising due to their ability to leverage the complementary strengths of PSCs and organic solar cells (OSCs). PO TSCs are poised to outperform existing TSCs in terms of device performance, manufacturing cost, and diverse applications. The introduction of Y6-series non-fullerene acceptors (NFAs) over the past three years has significantly advanced the development of OSCs, leading to remarkable progress in PO TSCs. This paper commences by elucidating the advantages and potential of OSCs as bottom sub-cells in PO TSCs, followed by an in-depth review of mainstream interconnection layer (ICL) design. It then addresses key challenges in wide bandgap PSCs, including phase segregation, photovoltage loss, energy loss, and long-term stability. The paper concludes by examining critical factors influencing the future development of PO TSCs.

5.
ACS Appl Mater Interfaces ; 16(13): 16351-16362, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38515323

ABSTRACT

Poly(ethylene oxide) (PEO)-based electrolytes have been extensively studied for all-solid-state lithium-metal batteries due to their excellent film-forming capabilities and low cost. However, the limited ionic conductivity and poor mechanical strength of the PEO-based electrolytes cannot prevent the growth of undesirable lithium dendrites, leading to the failure of batteries. Metal-organic frameworks (MOFs) are functional materials with a periodic porous structure that can improve the electrochemical performance of PEO-based electrolytes. However, the enhancement effect of MOFs with different metal centers and the interaction mechanism with PEO remain unclear. Herein, MOF-74s with Cu or Ni centers are prepared and used as fillers of PEO-based electrolytes. Adding 15 wt % of Cu-MOF-74 to the PEO-based electrolyte (15%Cu-MOF/P-Li) effectively improves the ionic conductivity, lithium transference number, and mechanical strength of the PEO-based electrolyte simultaneously. Furthermore, the ordered pore channels of Cu-MOF-74 provide uniform Li-ion transport pathways, facilitating homogeneous Li+ deposition. As a result, the lithium symmetric cell with 15%Cu-MOF/P-Li shows stable cycles for 1080 h at 0.1 mA cm-2 and 0.1 mAh cm-2, and the Li | 15% Cu-MOF/P-Li | LFP full cell exhibits a long cycle life up to 200 cycles at 60 °C and 0.5 C, with a capacity retention rate of 89.7%.

6.
Angew Chem Int Ed Engl ; 63(13): e202317256, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38289336

ABSTRACT

Powdery hexagonal boron nitride (h-BN), as an important material for electrochemical energy storage, has been typically synthesized in bulk and one/two-dimensional (1/2D) nanostructured morphologies. However, until now, no method has been developed to synthesize powdery three-dimensional (3D) h-BN. This work introduces a novel NaCl-glucose-assisted strategy to synthesize micron-sized 3D h-BN with a honeycomb-like structure and its proposed formation mechanism. We propose that NaCl acts as the template of 3D structure and promotes the nitridation reaction by adsorbing NH3 . Glucose facilitates the homogeneous coating of boric acid onto the NaCl surface via functionalizing the NaCl surface. During the nitridation reaction, boron oxides (BO4 and BO3 ) form from a dehydration reaction of boric acid, which is then reduced to O2 -B-N and O-B-N2 intermediates before finally being reduced to BN3 by NH3 . When incorporated into polyethylene oxide-based electrolytes for Li metal batteries, 5 wt % of 3D h-BN significantly enhances ionic conductivity and mechanical strength. Consequently, this composite electrolyte demonstrates superior electrochemical stability. It delivers 300 h of stable cycles in the Li//Li cell at 0.1 mA cm-2 and retains 89 % of discharge capacity (138.9 mAh g-1 ) after 100 cycles at 1 C in the LFP//Li full cell.

7.
Angew Chem Int Ed Engl ; 63(1): e202316116, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37983741

ABSTRACT

The water-soluble salt-template technique holds great promise for fabricating 3D porous materials. However, an equipment-free and pore-size controllable synthetic approach employing salt-template precursors at room temperature has remained unexplored. Herein, we introduce a green room-temperature antisolvent precipitation strategy for creating salt-template self-assembly precursors to universally produce 3D porous materials with controllable pore size. Through a combination of theoretical simulations and advanced characterization techniques, we unveil the antisolvent precipitation mechanism and provide guidelines for selecting raw materials and controlling the size of precipitated salt. Following the calcination and washing steps, we achieve large-scale and universal production of 3D porous materials and the recycling of the salt templates and antisolvents. The optimized nitrogen-doped 3D porous carbon (N-3DPC) materials demonstrate distinctive structural benefits, facilitating a high capacity for potassium-ion storage along with exceptional reversibility. This is further supported by in situ electrochemical impedance spectra, in situ Raman spectroscopy, and theoretical calculations. The anode shows a high rate capacity of 181 mAh g-1 at 4 A g-1 in the full cell. This study addresses the knowledge gap concerning the room-temperature synthesis of salt-template self-assembly precursors for the large-scale production of porous materials, thereby expanding their potential applications for electrochemical energy conversion and storage.

8.
Chin Herb Med ; 15(4): 614, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38094024

ABSTRACT

[This corrects the article DOI: 10.1016/j.chmed.2022.08.005.].

9.
Foods ; 12(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38137214

ABSTRACT

Huangqin tea (HQT), a Non-Camellia Tea derived from the aerial parts of Scutellaria baicalensis, is widely used in the north of China. The intervention effects of HQT on intestinal inflammation and tumors have been found recently, but the active ingredient and mechanism of action remain unclear. This study aimed to investigate the interactions between the potential flavonoid active components and gut microbiota through culture experiments in vitro combined with HPLC-UV, UPLC-QTOF-MS, and 16S rDNA sequencing technology. The results showed that the HQT total flavonoids were mainly composed of isocarthamidin-7-O-ß-D-glucuronide, carthamidin-7-O-ß-D-glucuronide, scutellarin, and others, which interact closely with gut microbiota. After 48 h, the primary flavonoid glycosides transformed into corresponding aglycones with varying degrees of deglycosylation. The composition of the intestinal microbiota was changed significantly. The beneficial bacteria, such as Enterococcus and Parabacteroides, were promoted, while the harmful bacteria, such as Shigella, were inhibited. The functional prediction results have indicated notable regulatory effects exerted by total flavonoids and scutellarin on various pathways, including purine metabolism and aminoacyl-tRNA biosynthesis, among others, to play a role in the intervention of inflammation and tumor-related diseases. These findings provided valuable insights for further in-depth research and investigation of the active ingredients, metabolic processes, and mechanisms of HQT.

10.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5487-5497, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114141

ABSTRACT

The leaves of sea buckthorn(Hippophae rhamnoides), considered as common food raw materials, have records of medicinal use and diverse pharmacological activities, showing a potential medicinal value. However, the active substances in the sea buckthorn leaves and their mechanisms of action remain unclear. In addition, due to the extensive source and large variety variations, the quality evaluation criteria of sea buckthorn leaves remain to be developed. To solve the problems, this study predicted the main active components, core targets, key pathways, and potential pharmacological effects of sea buckthorn leaves by network pharmacology and molecular docking. Furthermore, ultra-performance liquid chromatography with diode-array detection(UPLC-DAD) was employed to determine the content of active components and establish the chemical fingerprint, on the basis of which the quality markers of sea buckthorn leaves were predicted and then verified by the enzyme activity inhibition method. The results indicated that sea buckthorn leaves had potential therapeutic effects on a variety of digestive tract diseases, metabolic diseases, tumors, and autoimmune diseases, which were consistent with the ancient records and the results of modern pharmacological studies. The core targets of sea buckthorn leaves included PTPN11, AKT1, PIK3R1, ESR1, and SRC, which were mainly involved in the PI3K-AKT, MAPK, and HIF-1 signaling pathways. In conclusion, the active components of sea buckthorn leaves are associated with the rich flavonoids and tannins, among which quercitrin, narcissoside, and ellagic acid can be used as the quality markers of sea buckthorn leaves. The findings provide a reference for the quality control and further development and utilization of sea buckthorn leaves as medicinal materials.


Subject(s)
Hippophae , Hippophae/chemistry , Network Pharmacology , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/metabolism , Flavonoids/analysis , Fruit/chemistry
11.
Phys Chem Chem Phys ; 25(48): 32989-32999, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38032048

ABSTRACT

Changing the composition is an important way to regulate the electrocatalytic performance of the oxygen evolution reaction (OER) for metallic compounds. Clarifying the synergistic mechanism among different compositions is a key scientific problem to be solved urgently. Here, based on first-principles calculations, a Ni-O-Fe multisite dynamic synergistic reaction mechanism (MDSM) for the OER of Fe-doped NiOOH (NiFeOOH) has been discovered. Based on the MDSM, Fe/O/Ni are triggered as the active sites in turn, resulting in an overpotential of 0.33 V. The factors affecting the deprotonation, O-O coupling, and O2 desorption during the OER process are analyzed. The electron channels related to the magnetic states among Fe-O-Ni is revealed, which results in the decoupling between OER sites and the oxidation reaction sites. O-O coupling and O2 desorption are affected by ferromagnetic coupling and the instability of the lattice O during the OER process, respectively. The results give a comprehensive understanding of the active sites in NiFeOOH and provide a new perspective on the synergistic effects among different compositions in metal compounds during the OER process.

13.
Chem Soc Rev ; 52(22): 7802-7847, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37869994

ABSTRACT

To support the global goal of carbon neutrality, numerous efforts have been devoted to the advancement of electrochemical energy conversion (EEC) and electrochemical energy storage (EES) technologies. For these technologies, transition metal dichalcogenide/carbon (TMDC/C) heterostructures have emerged as promising candidates for both electrode materials and electrocatalysts over the past decade, due to their complementary advantages. It is worth noting that interfacial properties play a crucial role in establishing the overall electrochemical characteristics of TMDC/C heterostructures. However, despite the significant scientific contribution in this area, a systematic understanding of TMDC/C heterostructures' interfacial engineering is currently lacking. This literature review aims to focus on three types of interfacial engineering, namely interfacial orientation engineering, interfacial stacking engineering, and interfacial doping engineering, of TMDC/C heterostructures for their potential applications in EES and EEC devices. To accomplish this goal, a combination of experimental and theoretical approaches was used to allow the analysis and summary of the fundamental electrochemical properties and preparation strategies of TMDC/C heterostructures. Moreover, this review highlights the design and utilization of the interfacial engineering of TMDC/C heterostructures for specific EES and EEC devices. Finally, the challenges and opportunities of using interfacial engineering of TMDC/C heterostructures in practical EES and EEC devices are outlined. We expect that this review will effectively guide readers in their understanding, design, and application of interfacial engineering of TMDC/C heterostructures.

14.
Front Plant Sci ; 14: 1243724, 2023.
Article in English | MEDLINE | ID: mdl-37711307

ABSTRACT

Introduction: Paeonia ostii T. Hong & J.X. Zhang (s.s.) (Chinese name, Fengdan) is a widely cultivated food-medicine plant in China, in which root bark, seed kernels, and flowers are utilized for their medicinal and edible values. However, other parts of the plant are not used efficiently, in part due to a poor understanding of their chemical composition and potential biological activity. Methods: Untargeted ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry (UPLC-Q-TOF-MS) metabolomics was applied to characterize the metabolic profiles of 10 different parts of P. ostii. Results and discussion: A total of 160 metabolites were alternatively identified definitely or tentatively, which were significantly different in various plant parts by multivariate statistical analysis. Quantitative analysis showed that underutilized plant parts also contain many active ingredients. Compared with the medicinal part of root bark, the root core part still contains a higher content of paeoniflorin (17.60 ± 0.06 mg/g) and PGG (15.50 ± 2.00 mg/g). Petals, as an edible part, contain high levels of quercitrin, and stamens have higher methyl gallate and PGG. Unexpectedly, the ovary has the highest content of methyl gallate and rather high levels of PGG (38.14 ± 1.27 mg/g), and it also contains surprisingly high concentrations of floralalbiflorin I. Paeoniflorin (38.68 ± 0.76 mg/g) is the most abundant in leaves, and the content is even higher than in the root bark. Branches are also rich in a variety of catechin derivatives and active ingredients such as hydrolyzable tannins. Seed kernels also contain fairly high levels of paeoniflorin and albiflorin. Fruit shells still contain a variety of components, although not at high levels. Seed coats, as by-products removed from peony seeds before oil extraction, have high contents of stilbenes, such as trans-gnetin H and suffruticosol B, showing significant potential for exploitation. Except for the seed kernels, extracts obtained from other parts exhibited good antioxidant activity in DPPH, ABTS, and ferric ion reducing antioxidant power (FRAP) assays (0.09-1.52 mmol TE/g). Five compounds (gallic acid, PGG, trans-resveratrol, kaempferol, and quercitrin) were important ingredients that contributed to their antioxidant activities. Furthermore, P. ostii seed cakes were first reported to possess agonistic activity toward CB1/CB2 receptors. This study provides a scientific basis for the further development and utilization of P. ostii plant resources.

15.
Adv Mater ; 35(52): e2307209, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37729880

ABSTRACT

The sub-10 nm metal-based nanomaterials (SMNs) show great potential for the electrochemical energy storage field. However, their ion storage capacity and stability suffer from severe agglomeration and interface problems. Herein, a universal strategy is reported to synthesize a wide range of SMNs (e.g., metal, nitride, oxide, and sulfides) embedded in free-standing carbon foam (SMN/FC-F) composite electrodes by crossing the interfacial confinement of NaCl self-assembly with the thermal-mechanical coupling of powder metallurgy. The pressure-enhanced NaCl self-assembly interfacial confinement is greatly beneficial to preventing SMN agglomeration and promoting SMNs embedded in FC-F which originate from the welding of carbon nanosheets. They are confirmed via a series of advanced characterizations including X-ray photoelectron spectroscopy, and spherical aberration-corrected scanning transmission electron microscopy, with theoretical computations. Benefiting from the unique structure, SMNs/FC-F delivers ultrafast and stable ion-storage kinetics. As a proof-of-concept demonstration, the MoS2 /FC-F shows excellent ion storage kinetics and superior long-term cycling performance for ion storage (e.g., Na3 V2 (PO4 )2 O2 F/C//MoS2 /FC-F sodium-ion batteries exhibit a high reversible capacity of 185 mAh g-1 at 0.5 A g-1 with a decay rate of 0.05% per cycle.). This work provides a new opportunity to design and fabricate promising SMN-based free-standing working electrodes for electrochemical energy storage and conversion applications.

16.
Biomed Pharmacother ; 163: 114818, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37182513

ABSTRACT

Our previous studies uncovered the glucose-lowering properties of snow chrysanthemum tea, however, the active ingredients and underlying mechanisms were yet to be uncovered. Flavonoids are the most active and abundant components in snow chrysanthemum tea. In this study, we treated leptin-deficient diabetic ob/ob or high-fat diet (HFD)-induced C57BL/6 J obese mice with or without total flavonoids of snow chrysanthemum (TFSC) for 14 weeks. Results indicated that TFSC ameliorated dyslipidemia and fatty liver, thereby reducing hyperlipidemia. Further mechanism experiments, including RNA-seq and experimental validation, revealed TFSC improved glycolipid metabolism primarily by activating the AMPK/Sirt1/PPARγ pathway. Additionally, by integrating UPLC, network pharmacology, transcriptomics, and experimental validation, we identified two novel hypoglycemic compounds, sulfuretin and leptosidin, in TFSC. Treatment with 12.5 µmol/L sulfuretin obviously stimulated cellular glucose consumption, and sulfuretin (3.125, 6.25 and 12.5 µmol/L) significantly mitigated glucose uptake damage and reliably facilitated glucose consumption in insulin-resistant HepG2 cells. Remarkably, sulfuretin interacted with the ligand-binding pocket of PPARγ via three hydrogen bond interactions with the residues LYS-367, GLN-286 and TYR-477. Furthermore, a concentration of 12.5 µmol/L sulfuretin effectively upregulated the expression of PPARγ, exhibiting a comparable potency to a renowned PPARγ agonist at 20 µmol/L. Taken together, our findings have identified two new hypoglycemic compounds and revealed their mechanisms, which significantly expands people's understanding of the active components in snow chrysanthemum that have hypoglycemic effects.


Subject(s)
Chrysanthemum , Hypoglycemic Agents , Mice , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Molecular Docking Simulation , Chrysanthemum/chemistry , PPAR gamma/genetics , PPAR gamma/metabolism , Network Pharmacology , Transcriptome , Mice, Inbred C57BL , Glucose , Flavonoids/pharmacology , Tea
17.
J Colloid Interface Sci ; 645: 329-337, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37150006

ABSTRACT

Developing highly efficient, low-cost, and stable bifunctional oxygen electrocatalysts is essential for the wide popularization of rechargeable Zn-air batteries. Combining zero-dimensional metal nanoparticles with two-dimensional metal oxide nanosheets is an appealing strategy to balance performance and cost. However, the precise construction of these composites remains a great challenge, and their interaction mechanisms lack thorough study. Herein, a cobalt-oxide-based bifunctional oxygen electrocatalyst comprising a rich Co-CoO heterointerface (CoO/Co@NG) was synthesized via a NaCl sealing-assisted pyrolysis strategy. The NaCl crystals played the role of a closed nanoreactor, which facilitated the formation of a CoO-Co heterojunction. Experimental results and theoretical calculations confirmed that the ingeniously constructed heterojunction expedited the oxygen reduction reaction and oxygen evolution reaction kinetics, which is superior to Pt/C. When serving as the air electrode in an assembled liquid-state Zn-air battery, the battery shows high power density (215 mW cm-2), specific capacity (710 mAh gzn-1), and outstanding durability (720 h at 10 mA cm-2). This work provides an innovative avenue to design high-performance heterojunction electrocatalysts for perdurable Zn-air batteries.

18.
Food Sci Nutr ; 11(3): 1212-1222, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36911815

ABSTRACT

Sea buckthorn leaf tea, an emerging potential functional beverage product, has not yet had appropriate product standards and corresponding quality evaluation methods, and its poor taste directly affects the acceptance of the population, thus limiting its market consumption potential. In this study, two major packaging forms of sea buckthorn leaf tea available in the Chinese market were selected. The contents of total phenolics, total flavonoids, and 10 phenolic compounds, as well as the in vitro antioxidant capacity and sensory characteristics of sea buckthorn leaf tea were analyzed. Results showed that the quality of sea buckthorn leaf tea in the Chinese market varied widely. The total phenolic content, total flavonoid content, antioxidant activity, and consumer acceptance of bagged sea buckthorn leaf tea were higher than those of bulk sea buckthorn leaf tea. Multifactorial statistical analysis showed that the taste astringency of sea buckthorn leaf tea was closely related to ellagic acid and isorhamnetin-3-O-neohesperidin. Furthermore, isorhamnetin-3-O-neohesperidin had a greater effect on the antioxidant activity of sea buckthorn leaf tea. Therefore, ellagic acid and isorhamnetin-3-O-neohesperidin can be used as potential quality markers for sea buckthorn leaf tea. This work provides a reference for taste improvement and quality control of sea buckthorn leaf tea.

19.
Chin Herb Med ; 15(1): 33-36, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36875437

ABSTRACT

Tea is a famous beverage that is produced from leaves of Camellia sinensis. Amongst the six major tea categories in China, dark tea is the only one that involves microbial fermentation in the manufacturing process, which contributes unique flavors and functions for the tea. In the recent decade, the reports about the biofunctions of dark teas have increased rapidly. Therefore it may be the proper time to consider dark tea as one potential homology of medicine and food. In this viewpoint, our current understanding of the chemical constituents, biological activities and possible health beneficial effects of dark teas were introduced. Some future directions and challenges to the development perspectives of dark teas were also discussed.

20.
Chin Herb Med ; 15(1): 6-14, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36875443

ABSTRACT

Food-medicine products are important materials for daily health management and are increasingly popular in the global healthy food market. However, because of the biocultural difference, food-medicine knowledge may differ among regions, which hinders the global sharing of such health strategies. Aim at bridging the food-medicine knowledge in the East and West, this study traced the historical roots of food and medicine continuum of the East and West, which was followed by a cross-cultural assessment on the importance of food-medicine products of China, thereafter, the current legislative terms for food-medicine products were studied using an international survey. The results show that the food and medicine continuum in the East and West have their historical roots in the traditional medicines since antiquity, and the food-medicine knowledge in the East and West differs substantially; although the food-medicine products have common properties, their legislative terms are diverse globally; with proofs of traditional uses and scientific evidence, food-medicine products are possible for cross-cultural communication. Finally, we recommend facilitating the cross-cultural communication of the food-medicine knowledge in the East and West, thus to make the best use of the traditional health wisdom in the globe.

SELECTION OF CITATIONS
SEARCH DETAIL
...