Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 655
Filter
1.
Zool Res ; 45(3): 663-678, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38766748

ABSTRACT

A growing number of studies have demonstrated that repeated exposure to sevoflurane during development results in persistent social abnormalities and cognitive impairment. Davunetide, an active fragment of the activity-dependent neuroprotective protein (ADNP), has been implicated in social and cognitive protection. However, the potential of davunetide to attenuate social deficits following sevoflurane exposure and the underlying developmental mechanisms remain poorly understood. In this study, ribosome and proteome profiles were analyzed to investigate the molecular basis of sevoflurane-induced social deficits in neonatal mice. The neuropathological basis was also explored using Golgi staining, morphological analysis, western blotting, electrophysiological analysis, and behavioral analysis. Results indicated that ADNP was significantly down-regulated following developmental exposure to sevoflurane. In adulthood, anterior cingulate cortex (ACC) neurons exposed to sevoflurane exhibited a decrease in dendrite number, total dendrite length, and spine density. Furthermore, the expression levels of Homer, PSD95, synaptophysin, and vglut2 were significantly reduced in the sevoflurane group. Patch-clamp recordings indicated reductions in both the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs). Notably, davunetide significantly ameliorated the synaptic defects, social behavior deficits, and cognitive impairments induced by sevoflurane. Mechanistic analysis revealed that loss of ADNP led to dysregulation of Ca 2+ activity via the Wnt/ß-catenin signaling, resulting in decreased expression of synaptic proteins. Suppression of Wnt signaling was restored in the davunetide-treated group. Thus, ADNP was identified as a promising therapeutic target for the prevention and treatment of neurodevelopmental toxicity caused by general anesthetics. This study provides important insights into the mechanisms underlying social and cognitive disturbances caused by sevoflurane exposure in neonatal mice and elucidates the regulatory pathways involved.


Subject(s)
Animals, Newborn , Cognitive Dysfunction , Proteome , Sevoflurane , Social Behavior , Animals , Sevoflurane/adverse effects , Mice , Cognitive Dysfunction/chemically induced , Ribosomes/drug effects , Ribosomes/metabolism , Anesthetics, Inhalation/adverse effects , Anesthetics, Inhalation/toxicity , Anesthetics, Inhalation/pharmacology , Nerve Tissue Proteins/metabolism , Male , Behavior, Animal/drug effects
2.
Mol Cell Biochem ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795212

ABSTRACT

Radiotherapy is the conventional treatment for pelvic abdominal tumors. However, it can cause some damage to the small intestine and colorectal, which are very sensitive to radiation. Radiation-induced intestinal injury (RIII) affects the prognosis of radiotherapy, causing sequelae of loss of function and long-term damage to patients' quality of life. Swertiamarin is a glycoside that has been reported to prevent a variety of diseases including but not limited to diabetes, hypertension, atherosclerosis, arthritis, malaria, and abdominal ulcers. However, its therapeutic effect and mechanism of action on RIII have not been established. We investigated whether swertiamarin has a protective effect against RIII. In this article, we use irradiator to create cellular and mouse models of radiation damage. Preventive administration of swertiamarin could reduce ROS and superoxide anion levels to mitigate the cellular damage caused by radiation. Swertiamarin also attenuated RIII in mice, as evidenced by longer survival, less weight loss and more complete intestinal barrier. We also found an increase in the relative abundance of primary bile acids in irradiated mice, which was reduced by both FXR agonists and swertiamarin, and a reduction in downstream interferon and inflammatory factors via the cGAS-STING pathway to reduce radiation-induced damage.

3.
Front Microbiol ; 15: 1395583, 2024.
Article in English | MEDLINE | ID: mdl-38746754

ABSTRACT

Thermal pollution from the cooling system of the nuclear power plants greatly changes the environmental and the ecological conditions of the receiving marine water body, but we know little about their impact on the steady-state transition of marine bacterioplankton communities. In this study, we used high-throughput sequencing based on the 16S rRNA gene to investigate the impact of the thermal pollution on the bacterioplankton communities in a subtropical bay (the Daya Bay). We observed that thermal pollution from the cooling system of the nuclear power plant caused a pronounced thermal gradient ranging from 19.6°C to 24.12°C over the whole Daya Bay. A temperature difference of 4.5°C between the northern and southern parts of the bay led to a regime shift in the bacterioplankton community structure. In the three typical scenarios of regime shifts, the steady-state transition of bacterioplankton community structure in response to temperature increasing was more likely consistent with an abrupt regime shift rather than a smooth regime or a discontinuous regime model. Water temperature was a decisive factor on the regime shift of bacterioplankton community structure. High temperature significantly decreased bacterioplankton diversity and shifted its community compositions. Cyanobium and Synechococcus of Cyanobacteria, NS5 marine group of Bacteroidota, and Vibrio of Gammaproteobacteria were found that favored high temperature environments. Furthermore, the increased water temperature significantly altered the community assembly of bacterioplankton in Daya Bay, with a substantial decrease in the proportion of drift and others, and a marked increase in the proportion of homogeneous selection. In summary, we proposed that seawater temperature increasing induced by the thermal pollution resulted in an abrupt regime shift of bacterioplankton community in winter subtropical bay. Our research might broad our understanding of marine microbial ecology under future conditions of global warming.

4.
J Gene Med ; 26(5): e3687, 2024 May.
Article in English | MEDLINE | ID: mdl-38690623

ABSTRACT

BACKGROUND: Bones undergo a constant remodeling, a process involving osteoclast-mediated bone resorption and osteoblast-mediated bone formation, crucial for maintaining healthy bone mass. We previously observed that miR-185 depletion may promote bone formation by regulating Bgn expression and the BMP/Smad signaling pathway. However, the effects of miR-185-5p on the osteoclasts and bone remodeling have not been elucidated, warranting further exploration. METHODS: Tartrate-resistant acid phosphatase staining was utilized to assess the differentiation ability of bone marrow mononuclear macrophages (BMMs) from mmu-miR-185 gene knockout (KO) mice and wild-type (WT) mice. A reverse transcriptase-quantitative PCR was conducted to compare differences in miR-185-5p and osteoclast marker molecules, including Trap, Dcstamp, Ctsk and Nfatc1, between the KO group and WT group BMMs. Western blot analysis was employed to observe the expression of osteoclast marker molecules. A cell-counting kit-8 was used to analyze cell proliferation ability. Transwell experiments were conducted to detect cell migration. Dual-luciferase reporter assays were employed to confirm whether Btk is a downstream target gene of miR-185-5p. RESULTS: miR-185 depletion promoted osteoclast differentiation in bone marrow-derived monocytes/macrophages. Overexpression of miR-185-5p in RAW264.7 cells inhibited differentiation and migration of osteoclasts. Furthermore, Btk was identified as a downstream target gene of miR-185-5p, suggesting that miR-185-5p may inhibit osteoclast differentiation and migration by targeting Btk. CONCLUSIONS: miR-185 regulates osteoclasts differentiation, with overexpression of miR-185-5p inhibiting osteoclast differentiation and migration in vitro. Additionally, miR-185-5p may modulate osteoclastic differentiation and migration by regulating Btk expression.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Cell Differentiation , Cell Movement , Mice, Knockout , MicroRNAs , Osteoclasts , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Osteoclasts/metabolism , Osteoclasts/cytology , Cell Differentiation/genetics , Cell Movement/genetics , Mice , Agammaglobulinaemia Tyrosine Kinase/metabolism , Agammaglobulinaemia Tyrosine Kinase/genetics , Cell Proliferation/genetics , Gene Expression Regulation , Macrophages/metabolism , Signal Transduction , Osteogenesis/genetics
5.
mSphere ; : e0018224, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738873

ABSTRACT

The appearance and prevalence of multidrug-resistance (MDR) Gram-negative bacteria (GNB) have limited our antibiotic capacity to control bacterial infections. The clinical efficacy of colistin (COL), considered as the "last resort" for treating GNB infections, has been severely hindered by its increased use as well as the emergence and prevalence of mobile colistin resistance (MCR)-mediated acquired drug resistance. Identifying promising compounds to restore antibiotic activity is becoming an effective strategy to alleviate the crisis of increasing MDR. We first demonstrated that the combination of berberine (BBR) and EDTA substantially restored COL sensitivity against COL-resistant Salmonella and Escherichia coli. Molecular docking indicated that BBR can interact with MCR-1 and the efflux pump system AcrAB-TolC, and BBR combined with EDTA downregulated the expression level of mcr-1 and tolC. Mechanically, BBR combined with EDTA could increase bacterial membrane damage, inhibit the function of multidrug efflux pump, and promote oxidative damage, thereby boosting the action of COL. In addition, transcriptome analysis found that the combination of BBR and EDTA can accelerate the tricarboxylic acid cycle, inhibit cationic antimicrobial peptide (CAMP) resistance, and attenuate Salmonella virulence. Notably, the combination of BBR and EDTA with COL significantly reduced the bacterial load in the liver and spleen of a mice model infected with Salmonella. Our findings revealed that BBR and EDTA can be used as adjuvants collectively with COL to synergistically reverse the COL resistance of bacteria. IMPORTANCE: Colistin is last-resort antibiotic used to treat serious clinical infections caused by MDR bacterial pathogens. The recent emergence of transferable plasmid-mediated COL resistance gene mcr-1 has raised the specter of a rapid worldwide spread of COL resistance. Coupled with the fact of barren antibiotic development pipeline nowadays, a critical approach is to revitalize existing antibiotics using antibiotic adjuvants. Our research showed that berberine combined with EDTA effectively reversed COL resistance both in vivo and in vitro through multiple modes of action. The discovery of berberine in combination with EDTA as a new and safe COL adjuvant provides a therapeutic regimen for combating Gram-negative bacteria infections. Our findings provide a potential therapeutic option using existing antibiotics in combination with antibiotic adjuvants and address the prevalent infections caused by MDR Gram-negative pathogens worldwide.

6.
Chin J Integr Med ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652227

ABSTRACT

OBJECTIVE: To investigate the mechanism of induction of ferroptosis by brazilin in breast cancer cells. METHODS: Breast cancer 4T1 cells were divided into 6 groups: control, brazilin 1/2 half maximal inhibitory concentration (IC50), IC50, 2×IC50, erastin (10 µg/mL) and capecitabine (10 µg/mL) groups. The effect of brazilin on the proliferation of 4T1 cells was detected by cell counting kit-8 assay, and the treatment dose of brazilin was screened. The effect of brazilin on the mitochondrial morphology of 4T1 cells, and the mitochondrial damage was evaluated under electron microscopy. The levels of Fe2+, reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH) and glutathione peroxidase 4 (GPX4) were estimated using various detection kits. The invasion and migration abilities of 4T1 cells were detected by scratch assay and transwell assay. The expressions levels of tumor protein p53, solute carrier family 7 member 11 (SLC7A11), GPX4 and acyl-CoA synthetase long-chain family member 4 (ACSL4) proteins were quantified by Western blot assay. RESULTS: Compared to the control group, the 10 (1/2 IC50), 20 (IC50) and 40 (2×IC50) µg/mL brazilin, erastin, and capecitabine groups showed a significant decrease in the cell survival rate, invasion and migration abilities, GSH, SLC7A11 and GPX4 protein expression levels, and mitochondrial volume and ridge (P<0.05), and a significant increase in the mitochondria membrane density, Fe2+, ROS and MDA levels, and p53 and ACSL4 protein expression levels (P<0.05). CONCLUSIONS: Brazilin actuated ferroptosis in breast cancer cells, and the underlying mechanism is mainly associated with the p53/SLC7A11/GPX4 signaling pathway.

7.
Comput Biol Med ; 173: 108381, 2024 May.
Article in English | MEDLINE | ID: mdl-38569237

ABSTRACT

Multimodal medical image fusion (MMIF) technology plays a crucial role in medical diagnosis and treatment by integrating different images to obtain fusion images with comprehensive information. Deep learning-based fusion methods have demonstrated superior performance, but some of them still encounter challenges such as imbalanced retention of color and texture information and low fusion efficiency. To alleviate the above issues, this paper presents a real-time MMIF method, called a lightweight residual fusion network. First, a feature extraction framework with three branches is designed. Two independent branches are used to fully extract brightness and texture information. The fusion branch enables different modal information to be interactively fused at a shallow level, thereby better retaining brightness and texture information. Furthermore, a lightweight residual unit is designed to replace the conventional residual convolution in the model, thereby improving the fusion efficiency and reducing the overall model size by approximately 5 times. Finally, considering that the high-frequency image decomposed by the wavelet transform contains abundant edge and texture information, an adaptive strategy is proposed for assigning weights to the loss function based on the information content in the high-frequency image. This strategy effectively guides the model toward preserving intricate details. The experimental results on MRI and functional images demonstrate that the proposed method exhibits superior fusion performance and efficiency compared to alternative approaches. The code of LRFNet is available at https://github.com/HeDan-11/LRFNet.


Subject(s)
Image Processing, Computer-Assisted , Wavelet Analysis
8.
Radiology ; 311(1): e231461, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652028

ABSTRACT

Background Noninvasive tests can be used to screen patients with chronic liver disease for advanced liver fibrosis; however, the use of single tests may not be adequate. Purpose To construct sequential clinical algorithms that include a US deep learning (DL) model and compare their ability to predict advanced liver fibrosis with that of other noninvasive tests. Materials and Methods This retrospective study included adult patients with a history of chronic liver disease or unexplained abnormal liver function test results who underwent B-mode US of the liver between January 2014 and September 2022 at three health care facilities. A US-based DL network (FIB-Net) was trained on US images to predict whether the shear-wave elastography (SWE) value was 8.7 kPa or higher, indicative of advanced fibrosis. In the internal and external test sets, a two-step algorithm (Two-step#1) using the Fibrosis-4 Index (FIB-4) followed by FIB-Net and a three-step algorithm (Three-step#1) using FIB-4 followed by FIB-Net and SWE were used to simulate screening scenarios where liver stiffness measurements were not or were available, respectively. Measures of diagnostic accuracy were calculated using liver biopsy as the reference standard and compared between FIB-4, SWE, FIB-Net, and European Association for the Study of the Liver guidelines (ie, FIB-4 followed by SWE), along with sequential algorithms. Results The training, validation, and test data sets included 3067 (median age, 42 years [IQR, 33-53 years]; 2083 male), 1599 (median age, 41 years [IQR, 33-51 years]; 1124 male), and 1228 (median age, 44 years [IQR, 33-55 years]; 741 male) patients, respectively. FIB-Net obtained a noninferior specificity with a margin of 5% (P < .001) compared with SWE (80% vs 82%). The Two-step#1 algorithm showed higher specificity and positive predictive value (PPV) than FIB-4 (specificity, 79% vs 57%; PPV, 44% vs 32%) while reducing unnecessary referrals by 42%. The Three-step#1 algorithm had higher specificity and PPV compared with European Association for the Study of the Liver guidelines (specificity, 94% vs 88%; PPV, 73% vs 64%) while reducing unnecessary referrals by 35%. Conclusion A sequential algorithm combining FIB-4 and a US DL model showed higher diagnostic accuracy and improved referral management for all-cause advanced liver fibrosis compared with FIB-4 or the DL model alone. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Ghosh in this issue.


Subject(s)
Algorithms , Elasticity Imaging Techniques , Liver Cirrhosis , Humans , Male , Liver Cirrhosis/diagnostic imaging , Middle Aged , Female , Retrospective Studies , Elasticity Imaging Techniques/methods , Adult , Deep Learning , Liver/diagnostic imaging , Liver/pathology , Aged , Ultrasonography/methods
9.
Article in English | MEDLINE | ID: mdl-38536958

ABSTRACT

BACKGROUND: Bone mineral density (BMD) is a major predictor of osteoporotic fractures, and previous studies have reported the effects of mitochondrial dysfunction and lifestyle on BMD, respectively. However, their interaction effects on BMD are still unclear. Therefore, we aimed to investigate the possible interaction of mitochondrial DNA (mtDNA) and common lifestyles contributing to osteoporosis. METHODS: Our analysis included 119,120 white participants (Nfemale=65,949 and Nmale=53,171) from the UK Biobank with heel BMD phenotype data. A generalized linear regression model of PLINK was performed to assess the interaction effects of mtDNA and five life environmental factors on heel BMD, including smoking, drinking, physical activity, dietary diversity score, and vitamin D. In addition, we also performed linear regression analysis for total body BMD. Finally, we assessed the potential causal relationships between mtDNA copy number (mtDNA-CN) and life environmental factors using Mendelian randomization (MR) analysis. RESULTS: Our study identified four mtDNA loci showing suggestive evidence of heel BMD, such as m.16356T>C (MT-DLOOP; P =1.50×10-3) in total samples. Multiple candidate mtDNA×lifetsyle interactions were also detected for heel BMD, such as MT-ND2×physical activity (P = 2.88×10-3) in total samples and MT-ND1×smoking (P = 8.54×10-4) in males. Notably, MT-CYB was a common candidate mtDNA loci for heel BMD to interact with five life environmental factors. Multivariable MR analysis indicated a causal effect of physical activity on heel BMD when mtDNA-CN was considered (P =1.13×10-3). CONCLUSIONS: Our study suggests the candidate interaction between mitochondria and lifestyles on heel BMD, providing novel clues for exploring the pathogenesis of osteoporosis.

10.
Nature ; 627(8004): 680-687, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38448587

ABSTRACT

Methods for selective covalent modification of amino acids on proteins can enable a diverse array of applications, spanning probes and modulators of protein function to proteomics1-3. Owing to their high nucleophilicity, cysteine and lysine residues are the most common points of attachment for protein bioconjugation chemistry through acid-base reactivity3,4. Here we report a redox-based strategy for bioconjugation of tryptophan, the rarest amino acid, using oxaziridine reagents that mimic oxidative cyclization reactions in indole-based alkaloid biosynthetic pathways to achieve highly efficient and specific tryptophan labelling. We establish the broad use of this method, termed tryptophan chemical ligation by cyclization (Trp-CLiC), for selectively appending payloads to tryptophan residues on peptides and proteins with reaction rates that rival traditional click reactions and enabling global profiling of hyper-reactive tryptophan sites across whole proteomes. Notably, these reagents reveal a systematic map of tryptophan residues that participate in cation-π interactions, including functional sites that can regulate protein-mediated phase-separation processes.


Subject(s)
Cations , Cyclization , Indicators and Reagents , Proteins , Tryptophan , Cations/chemistry , Indicators and Reagents/chemistry , Oxidation-Reduction , Proteome/chemistry , Tryptophan/chemistry , Peptides/chemistry , Click Chemistry , Proteins/chemistry
11.
Hum Genet ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507016

ABSTRACT

Aims Many studies indicated use of diabetes medications can influence the electrocardiogram (ECG), which remains the simplest and fastest tool for assessing cardiac functions. However, few studies have explored the role of genetic factors in determining the relationship between the use of diabetes medications and ECG trace characteristics (ETC). Methods Genome-wide association studies (GWAS) were performed for 168 ETCs extracted from the 12-lead ECGs of 42,340 Europeans in the UK Biobank. The genetic correlations, causal relationships, and phenotypic relationships of these ETCs with medication usage, as well as the risk of cardiovascular diseases (CVDs), were estimated by linkage disequilibrium score regression (LDSC), Mendelian randomization (MR), and regression model, respectively. Results The GWAS identified 124 independent single nucleotide polymorphisms (SNPs) that were study-wise and genome-wide significantly associated with at least one ETC. Regression model and LDSC identified significant phenotypic and genetic correlations of T-wave area in lead aVR (aVR_T-area) with usage of diabetes medications (ATC code: A10 drugs, and metformin), and the risks of ischemic heart disease (IHD) and coronary atherosclerosis (CA). MR analyses support a putative causal effect of the use of diabetes medications on decreasing aVR_T-area, and on increasing risk of IHD and CA. ConclusionPatients taking diabetes medications are prone to have decreased aVR_T-area and an increased risk of IHD and CA. The aVR_T-area is therefore a potential ECG marker for pre-clinical prediction of IHD and CA in patients taking diabetes medications.

12.
J Transl Med ; 22(1): 283, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491378

ABSTRACT

The activation of glycolysis, particularly in the context of reprogrammed energy metabolism, is increasingly recognized as a significant characteristic of cancer. However, the precise mechanisms by which glycolysis is promoted in metastatic gastric cancer cells under normal oxygen conditions remain poorly understood. MicroRNAs (miRNAs) play a crucial role in the development of malignant phenotypes in gastric cancer. Nevertheless, our understanding of the specific involvement of miRNAs in hypoxia-induced metabolic shifting and the subsequent metastatic processes is limited. Hypoxia-induced downregulation of miR-598-3p mechanistically leads to the upregulation of RMP and IGF1r, thereby promoting glycolysis. Either overexpression of miR-598-3p or R406 treatment effectively suppresses the metastasis of gastric cancer cells both in vitro and in vivo. Collectively, the depletion of miR-598-3p alters glucose metabolism from oxidative phosphorylation to glycolysis, thereby exacerbating the malignancy of gastric cancer cells. The present findings indicate a potential target for the development of therapeutics against gastric cancers with increased miR-598-3p expression.


Subject(s)
MicroRNAs , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Hypoxia/genetics , Glycolysis/genetics , Cell Proliferation/genetics , Cell Line, Tumor
13.
Microbiol Spectr ; 12(4): e0391823, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38441474

ABSTRACT

The outer membrane (OM) in gram-negative bacteria contains proteins that regulate the passive or active uptake of small molecules for growth and cell function, as well as mediate the emergence of antibiotic resistance. This study aims to explore the potential mechanisms for restoring bacteria to azithromycin susceptibility based on transcriptome analysis of bacterial membrane-related genes. Transcriptome sequencing was performed by treating multidrug-resistant Escherichia coli T28R with azithromycin or in combination with colistin and confirmed by reverse transcription-quantitative PCR (RT-qPCR). Azithromycin enzyme-linked immunosorbent assay (ELISA) test, ompC gene overexpression, and molecular docking were utilized to conduct the confirmatory research of the potential mechanisms. We found that colistin combined with azithromycin led to 48 differentially expressed genes, compared to azithromycin alone, such as downregulation of tolA, eptB, lpxP, and opgE and upregulation of ompC gene. Interestingly, the addition of colistin to azithromycin differentially downregulated the mph(A) gene mediating azithromycin resistance, facilitating the intracellular accumulation of azithromycin. Also, overexpression of the ompC elevated azithromycin susceptibility, and colistin contributed to further suppression of the Mph(A) activity in the presence of azithromycin. These findings suggested that colistin firstly enhanced the permeability of bacterial OM, causing intracellular drug accumulation, and then had a repressive effect on the Mph(A) activity along with azithromycin. Our study provides a novel perspective that the improvement of azithromycin susceptibility is related not only to the downregulation of the mph(A) gene and conformational remodeling of the Mph(A) protein but also the upregulation of the membrane porin gene ompC.IMPORTANCEUsually, active efflux via efflux pumps is an important mechanism of antimicrobial resistance, such as the AcrAB-TolC complex and MdtEF. Also, bacterial porins exhibited a substantial fraction of the total number of outer membrane proteins in Enterobacteriaceae, which are involved in mediating the development of the resistance. We found that the upregulation or overexpression of the ompC gene contributed to the enhancement of resistant bacteria to azithromycin susceptibility, probably due to the augment of drug uptakes caused and the opportunity of Mph(A) function suppressed by azithromycin with colistin. Under the combination of colistin and azithromycin treatment, OmpC exhibited an increased selectivity for cationic molecules and played a key role in the restoral of the antibiotic susceptibility. Investigations on the regulation of porin expression that mediated drug resistance would be important in clinical isolates treated with antibiotics.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Azithromycin/pharmacology , Colistin/pharmacology , Up-Regulation , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Porins/genetics , Porins/metabolism , Microbial Sensitivity Tests , Escherichia coli Proteins/metabolism
14.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38436562

ABSTRACT

BACKGROUND: Depression has been linked to an increased risk of cardiovascular and respiratory diseases; however, its impact on cardiac and lung function remains unclear, especially when accounting for potential gene-environment interactions. METHODS: We developed a novel polygenic and gene-environment interaction risk score (PGIRS) integrating the major genetic effect and gene-environment interaction effect of depression-associated loci. The single nucleotide polymorphisms (SNPs) demonstrating major genetic effect or environmental interaction effect were obtained from genome-wide SNP association and SNP-environment interaction analyses of depression. We then calculated the depression PGIRS for non-depressed individuals, using smoking and alcohol consumption as environmental factors. Using linear regression analysis, we assessed the associations of PGIRS and conventional polygenic risk score (PRS) with lung function (N = 42 886) and cardiac function (N = 1791) in the subjects with or without exposing to smoking and alcohol drinking. RESULTS: We detected significant associations of depression PGIRS with cardiac and lung function, contrary to conventional depression PRS. Among smokers, forced vital capacity exhibited a negative association with PGIRS (ß = -0.037, FDR = 1.00 × 10-8), contrasting with no significant association with PRS (ß = -0.002, FDR = 0.943). In drinkers, we observed a positive association between cardiac index with PGIRS (ß = 0.088, FDR = 0.010), whereas no such association was found with PRS (ß = 0.040, FDR = 0.265). Notably, in individuals who both smoked and drank, forced expiratory volume in 1-second demonstrated a negative association with PGIRS (ß = -0.042, FDR = 6.30 × 10-9), but not with PRS (ß = -0.003, FDR = 0.857). CONCLUSIONS: Our findings underscore the profound impact of depression on cardiac and lung function, highlighting the enhanced efficacy of considering gene-environment interactions in PRS-based studies.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/complications , Depressive Disorder, Major/genetics , Gene-Environment Interaction , Genetic Risk Score , Smoking/adverse effects , Lung
15.
Plants (Basel) ; 13(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38475531

ABSTRACT

Microbial communities are an important component of mangrove ecosystems. In order to reveal the diversity of endophytic fungi in the mangrove ferns Acrostichum speciosum and A. aureum in China, the internal transcribed spacer (ITS) regions of endophytic fungi in four plant tissues (leaves, petioles, roots, and rhizomes) from three locations (Zhanjiang, Haikou, and Wenchang) were sequenced. The richness, species composition, and community similarity were analyzed. The main results are as follows: the dominant fungi in A. speciosum and A. aureum belonged to the phyla Ascomycota and Basidiomycota, accounting for more than 75% of the total identified fungi; in terms of species composition at the operational taxonomic unit (OTU) level, the endophytic fungi in A. aureum were more diverse than those in A. speciosum, and the endophytic fungi in rhizomes were more diverse than in other tissues. In Zhanjiang, both A. speciosum and A. aureum showed the richest diversity of endophytic fungi, both at the OTU classification level and in terms of species composition. Conversely, the richness of endophytic fungi in the samples of A. speciosum from Wenchang and Haikou is extremely low. The regional differences in dominant fungi increase with the degrading of taxonomic levels, and there were also significant differences in the number of unique fungi among different origins, with Zhanjiang samples having a larger number of unique fungi than the other locations. There were significant differences in the dominant fungi among different tissues, with Xylariales being the dominant fungi in rhizomes of A. speciosum and Hypocreales being the dominant fungi in the petioles, roots, and rhizomes of A. aureum. Overall, the community similarity of endophytic fungi among locations is moderately dissimilar (26-50%), while the similarity between tissues is moderately similar (51-75%). The low diversity of endophytic fungi could be one of the main reasons for the endangerment of A. speciosum. The protection of the diversity of endophytic fungi in the underground parts of A. speciosum is essential for the conservation of this critically endangered mangrove fern.

16.
Brain Behav ; 14(3): e3447, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38450944

ABSTRACT

BACKGROUND AND OBJECTIVE: Persistent headache attributed to ischemic stroke (PHPIS) is increasingly acknowledged and was added to the 2018 ICHD-3. Intravenous thrombolysis (IVT) is a common treatment for acute ischemic stroke. It remains unknown whether this treatment influences the occurrence of a persistent poststroke headache. We aimed to describe the incidence and clinical characteristics of persistent headaches occurring after acute ischemic stroke in patients with or without IVT and explore the risk factors. METHODS: A prospective observational study was performed between the 234 individuals who received IVT and 226 individuals without IVT in 5 stroke units from Wuhan, China. Subjects were followed for 6 months after stroke via a structured questionnaire. RESULTS: Age, gender, vascular risk factors, and infarct location/ circulation distribution did not differ between the groups, although IVT group had higher initial NIHSS scores. At the end of the follow-up, 12.0% (55/460) of subjects reported persistent headaches after ischemic stroke. The prevalence of persistent headache was significantly higher in the IVT group than non-IVT group (15.4% vs. 8.4%, p = .021). Patients with younger age (p = .033; OR 0.97; 95% CI 0.939-0.997), female sex (p = .007; OR 2.40; 95% CI 1.269-4.520), posterior circulation infarct (p = .024; OR 2.19; 95% CI 1.110-4.311), and IVT (p = .005; OR 2.51; 95% CI 1.313-4.782) were more likely to develop persistent headache after ischemic stroke. CONCLUSION: The potential influence of IVT should be considered when assessing persistent poststroke headache. Future studies will investigate the underlying mechanisms.


Subject(s)
Ischemic Stroke , Stroke , Female , Humans , Headache/epidemiology , Headache/etiology , Infarction , Ischemic Stroke/complications , Ischemic Stroke/drug therapy , Ischemic Stroke/epidemiology , Stroke/complications , Stroke/epidemiology , Thrombolytic Therapy/adverse effects , Male
17.
J Chromatogr Sci ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38446787

ABSTRACT

Qizhi Xiangfu Pills (QZXFPs) is one of the most commonly used traditional Chinese medicine preparations for the treatment of dysmenorrhea, but the existing quality evaluation standards have certain shortcomings and deficiencies. An effective and scientific quality evaluation method plays a vital role in medication safety. In this study, fingerprint combined with chemometric analysis and quantitative analysis of multi-components by a single marker (QAMS) method was used to comprehensively evaluate the quality of QZXFPs. The fingerprints of 28 batches samples were established and 23 common peaks were distinguished, of which 7 peaks were identified as albiflorin, paeoniflorin, baicalin, ligustilide, cyperotundone, nootkatone and α-cyperone. The content of these seven active ingredients was determined simultaneously by the QAMS method and there was no significantly different between QAMS and the external standard method. Additionally, similarity analysis, hierarchical cluster analysis, principal component analysis and orthogonal partial least squares discrimination analysis were applied for classifying the 28 batches of samples, and to find the main components causing the quality differences between different batches. In conclusion, the established method can comprehensively evaluate the consistency of quality between different batches and provide a reference for formulation quality evaluation to ensure safe and effective application of QZXFPs.

18.
Biotechnol Biofuels Bioprod ; 17(1): 29, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38383469

ABSTRACT

BACKGROUND: The primary objective of rapeseed breeding is to enhance oil content, which is predominantly influenced by environmental factors. However, the molecular mechanisms underlying the impact of these environmental factors on oil accumulation remain inadequately elucidated. In this study, we used transcriptome data from two higher (HOC) and two lower oil content (LOC) inbred lines at 35 days after pollination (DAP) to investigate genes exhibiting stable expression across three different environments. Meanwhile, a genome-wide association study (GWAS) was utilized to detect candidate genes exhibiting significant associations with seed oil content across three distinct environments. RESULTS: The study found a total of 405 stable differentially expressed genes (DEGs), including 25 involved in lipid/fatty acid metabolism and 14 classified as transcription factors. Among these genes, BnBZIP10-A09, BnMYB61-A06, BnAPA1-A08, BnPAS2-A10, BnLCAT3-C05 and BnKASIII-C09 were also found to exhibit significant associations with oil content across multiple different environments based on GWAS of 50 re-sequenced semi-winter rapeseed inbred lines and previously reported intervals. Otherwise, we revealed the presence of additive effects among BnBZIP10-A09, BnKASIII-C09, BnPAS2-A10 and BnAPA1-A08, resulting in a significant increase in seed oil content. Meanwhile, the majority of these stable DEGs are interconnected either directly or indirectly through co-expression network analysis, thereby giving rise to an elaborate molecular network implicated in the potential regulation of seed oil accumulation and stability. CONCLUSIONS: The combination of transcription and GWAS revealed that natural variation in six environment-insensitive gene regions exhibited significant correlations with seed oil content phenotypes. These results provide important molecular marker information for us to further improve oil content accumulation and stability in rapeseed.

19.
J Microbiol Biotechnol ; 34(4): 978-984, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38379308

ABSTRACT

Genome-scale metabolic model (GEM) can be used to simulate cellular metabolic phenotypes under various environmental or genetic conditions. This study utilized the GEM to observe the internal metabolic fluxes of recombinant Escherichia coli producing gamma-aminobutyric acid (GABA). Recombinant E. coli was cultivated in a fermenter under three conditions: pH 7, pH 5, and additional succinic acids. External fluxes were calculated from cultivation results, and internal fluxes were calculated through flux optimization. Based on the internal flux analysis, glycolysis and pentose phosphate pathways were repressed under cultivation at pH 5, even though glutamate dehydrogenase increased GABA production. Notably, this repression was halted by adding succinic acid. Furthermore, proper sucA repression is a promising target for developing strains more capable of producing GABA.


Subject(s)
Escherichia coli , gamma-Aminobutyric Acid , Escherichia coli/genetics , Escherichia coli/metabolism , gamma-Aminobutyric Acid/metabolism , gamma-Aminobutyric Acid/biosynthesis , Hydrogen-Ion Concentration , Fermentation , Glycolysis , Succinic Acid/metabolism , Pentose Phosphate Pathway , Metabolic Flux Analysis , Models, Biological , Bioreactors/microbiology , Glutamate Dehydrogenase/metabolism , Glutamate Dehydrogenase/genetics , Metabolic Engineering/methods
20.
Plants (Basel) ; 13(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38337954

ABSTRACT

Tree peony (Paeonia suffruticosa) is a significant medicinal plant. However, the low rooting number is a bottleneck problem in the micropropagation protocols of P. ostii 'Fengdan'. The activity of superoxide dismutase (SOD) is closely related to root development. But research on the SOD gene's impact on rooting is still lacking. In this study, RNA sequencing (RNA-seq) was used to analyze the four crucial stages of root development in P. ostii 'Fengdan' seedlings, including the early root primordium formation stage (Gmfq), root primordium formation stage (Gmf), root protrusion stage (Gtq), and root outgrowth stage (Gzc). A total of 141.77 GB of data were obtained; 71,718, 29,804, and 24,712 differentially expressed genes (DEGs) were identified in the comparison groups of Gmfq vs. Gmf, Gmf vs. Gtq, and Gtq vs. Gzc, respectively. Among the 20 most highly expressed DEGs in the three comparison groups, only the CuZnSOD gene (SUB13202229, PoSOD) was found to be significantly expressed in Gtq vs. Gzc. The overexpression of PoSOD increased the number of adventitious roots and promoted the activities of peroxidase (POD) and SOD in P. ostii 'Fengdan'. The gene ADVENTITIOUS ROOTING RELATED OXYGENASE1 (PoARRO-1), which is closely associated with the development of adventitious roots, was also significantly upregulated in overexpressing PoSOD plants. Furthermore, PoSOD interacted with PoARRO-1 in yeast two-hybrid (Y2H) and biomolecular luminescence complementation (BiFC) assays. In conclusion, PoSOD could interact with PoARRO-1 and enhance the root development of tube plantlets in P. ostii 'Fengdan'. This study will help us to preliminarily understand the molecular mechanism of adventitious root formation and improve the root quality of tree peony and other medicinal plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...