Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 45(17): 4674-4677, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32870828

ABSTRACT

It is of scientific significance to explore the terahertz radiation source with the performances of high power, tunable frequency, and controllable chirp for the realization of coherent control of quantum systems. How to realize frequency chirp control of terahertz synchrotron radiation is the last puzzle to be completed. In this Letter, we propose a method to control the radiation frequency chirp with precision. A novel photomixing scheme is presented to generate a longitudinally modulated laser pulse with non-uniform time intervals between the adjacent micro-peaks, which means that there is a chirp in the modulation frequency, and this chirp can be continuously tuned. The interaction is made to occur between an electron beam and the modulated laser pulse in a modulator (an undulator tuned at the laser wavelength), then terahertz synchrotron radiation with the same spectrum characteristics as the modulated laser will be generated when the electron beam passes through the following bending magnet. We expect that this method will open a new way for the coherent control of quantum systems in the terahertz regime.

2.
Opt Express ; 27(9): 13229-13239, 2019 Apr 29.
Article in English | MEDLINE | ID: mdl-31052851

ABSTRACT

Self-amplified spontaneous emission (SASE) free electron laser (FEL) is capable of generating ultra-short, high power and high brightness X-ray pulses, but its temporal coherence is poor. Self-seeding scheme is an approach to improve the temporal coherence by employing a crystal monochromator. The crystal detuning effect is the phenomenon that the Bragg angle deviates from the middle of the reflection domain due to the refraction effect, and can affect the seed power of hard X-ray self-seeding (HXRSS) FEL. In this paper, we introduce a novel idea to maximize the seed power by tuning the incident angle off the Bragg condition where the Bragg photon energy is corresponding to the central photon energy of the input X-ray pulse. We present the numerical analysis of the detuning effect in different reflecting atomic planes and different asymmetry angles of diamond crystal. Moreover, we analyze how the detuning affects the seed efficiency of HXRSS FEL, and discuss the application to X-ray FEL oscillator (XFELO). We find when the detuning is much smaller than the bandwidth of input X-ray pulse, we can neglect the detuning effect. However, if the detuning is much larger than or comparable with the bandwidth of input X-ray pulse, the detuning effect can not be ignored. This work can give a guidance to HXRSS FEL and XFELO commissioning for high efficiency FEL output.

SELECTION OF CITATIONS
SEARCH DETAIL
...