Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 254(Pt 1): 127558, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37865368

ABSTRACT

Chinese giant salamander skin collagen (CGSSC) was successfully conjugated with glucose (Glu)/xylose (Xy) by ultrasound Maillard reaction (MR) in nature deep eutectic solvents (NADES). The effects of ultrasound and reducing sugar types on the degree graft (DG) of MR products (MRPs), as well as the influence of DG on the structure and functional properties of MRPs were investigated. The results indicated that the ultrasound assisted could markedly enhance the MR of CGSSC, and low molecular weight reducing sugars were more reactive in MR. The ultrasound MR significantly changed the microstructure, secondary and tertiary structures of CGSSC. Moreover, the free sulfhydryl content of MRPs were increased, thus enhancing the surface hydrophobicity, emulsifying properties and antioxidant activity, which were positively correlated with DG. These findings provided theoretical insights into the effects of ultrasound assisted and different sugar types on the functional properties of collagen induced by MR.


Subject(s)
Antioxidants , Maillard Reaction , Antioxidants/chemistry , Carbohydrates , Glucose/chemistry , Collagen
2.
J Sci Food Agric ; 103(5): 2273-2282, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36620949

ABSTRACT

BACKGROUND: Harpadon nehereus is a high-protein marine fish. A valuable way to add value to H. nehereus is to convert it into protein hydrolysate. The Maillard reaction is an effective way to improve the functional properties of peptides and proteins, which are affected by many factors such as reactant concentration, water activity, pH, temperature, and heating time. However, the traditional Maillard reaction method is inefficient. The purpose of this study was therefore to explore the effect of the ultrasound-assisted wet heating method on the Maillard reaction of H. nehereus protein hydrolysate (HNPH) in a new-type green solvent - a natural hypereutectic solvent (NADES). RESULTS: Harpadon nehereus protein hydrolysate-xylose (Xy) conjugates were prepared via a Maillard reaction in a NADES system using an ultrasound-assisted wet heating method. The effects of different treatment conditions on the Maillard reaction were studied. The optimized glycation degree (DG) of HNPH-Xy conjugates was obtained with a water content of 10%, a reaction temperature of 80 °C, a reaction time of 35 min, and an ultrasonic power level of 300 W. Compared with HNPH, the structure of HNPH-Xy conjugates were significantly changed. Moreover, the functional properties and antioxidant activity of HNPH-Xy were all superior to the HNPH. CONCLUSIONS: An ultrasound-assisted wet-heating Maillard reaction between HNPH and Xy in the NADES system could be a promising way to improve the functional properties of HNPH. © 2023 Society of Chemical Industry.


Subject(s)
Antioxidants , Maillard Reaction , Animals , Antioxidants/chemistry , Deep Eutectic Solvents , Protein Hydrolysates/chemistry , Xylose/chemistry , Heating , Solvents/chemistry , Water
3.
Food Chem ; 407: 135133, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36493492

ABSTRACT

The binding mechanism between tea polyphenols and sturgeon myofibrillar protein (SMP) in the early stage (0, 2, 4 min), middle stage (6, 10 min) and late stage (15 min) of low temperature vacuum heating (LTVH) in an in vitro anti-glycation model was investigated. The result indicated that the protein cross-linking during LTVH treatment were mainly induced by tea polyphenols. The loss rate of free arginine (Arg) and free lysine (Lys) of SMP at the late stage of LTVH treatment (15 min) was 73.95 % and 83.16 %, respectively. The hydrophobic force and disulfide bond were the main force between tea polyphenols and SMP in the middle and late stage of LTVH treatment. The benzene ring and phenolic hydroxyl group of tea polyphenols can interact with the amino acid residues of SMP, which was exothermic and entropy-increasing. This study provides new insights in the interaction mechanisms between tea polyphenols-protein during heat treatment process.


Subject(s)
Polyphenols , Tea , Polyphenols/pharmacology , Polyphenols/chemistry , Tea/chemistry , Vacuum , Heating , Temperature
4.
J Tissue Eng Regen Med ; 7(12): 984-93, 2013 Dec.
Article in English | MEDLINE | ID: mdl-22623422

ABSTRACT

To realize the therapeutic potential of mesenchymal stem cells (MSCs), a large number of high-quality MSCs isolated from different species, such as mouse, were acquired for preclinical animal studies. Surprisingly, isolation and purification of mouse MSCs (mMSCs) is arduous because of the low frequency of MSCs and contamination of haematopoietic cells in culture. We have developed a method based on low density and hypoxic culture to isolate and expand mMSCs from different strains, including BALB/c, C57BL/6J, FVB/N and DBA/2. The cells from all of the strains expanded more rapidly when plated at low density in hypoxic culture compared with normoxic culture. These cells expressed CD44, CD105, CD29 and Sca-1 markers but not CD11b, CD34, CD45 and CD31 markers. Moreover, they were able to differentiate along osteoblastic, adipocytic and chondrocytic lineages. In conclusion, we have developed a robust method for isolation and expansion of mMSCs by combining low-density culture with hypoxic culture.


Subject(s)
Bone Marrow Cells/cytology , Cell Culture Techniques/methods , Mesenchymal Stem Cells/cytology , Animals , Bone Marrow Cells/metabolism , Cell Differentiation , Cell Hypoxia , Cell Membrane/metabolism , Cell Proliferation , Cells, Cultured , Gene Expression Regulation , Karyotyping , Mesenchymal Stem Cells/metabolism , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...