Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
BMC Bioinformatics ; 16 Suppl 7: S10, 2015.
Article in English | MEDLINE | ID: mdl-25952019

ABSTRACT

BACKGROUND: Short-read aligners have recently gained a lot of speed by exploiting the massive parallelism of GPU. An uprising alterative to GPU is Intel MIC; supercomputers like Tianhe-2, currently top of TOP500, is built with 48,000 MIC boards to offer ~55 PFLOPS. The CPU-like architecture of MIC allows CPU-based software to be parallelized easily; however, the performance is often inferior to GPU counterparts as an MIC card contains only ~60 cores (while a GPU card typically has over a thousand cores). RESULTS: To better utilize MIC-enabled computers for NGS data analysis, we developed a new short-read aligner MICA that is optimized in view of MIC's limitation and the extra parallelism inside each MIC core. By utilizing the 512-bit vector units in the MIC and implementing a new seeding strategy, experiments on aligning 150 bp paired-end reads show that MICA using one MIC card is 4.9 times faster than BWA-MEM (using 6 cores of a top-end CPU), and slightly faster than SOAP3-dp (using a GPU). Furthermore, MICA's simplicity allows very efficient scale-up when multiple MIC cards are used in a node (3 cards give a 14.1-fold speedup over BWA-MEM). SUMMARY: MICA can be readily used by MIC-enabled supercomputers for production purpose. We have tested MICA on Tianhe-2 with 90 WGS samples (17.47 Tera-bases), which can be aligned in an hour using 400 nodes. MICA has impressive performance even though MIC is only in its initial stage of development. AVAILABILITY AND IMPLEMENTATION: MICA's source code is freely available at http://sourceforge.net/projects/mica-aligner under GPL v3. SUPPLEMENTARY INFORMATION: Supplementary information is available as "Additional File 1". Datasets are available at www.bio8.cs.hku.hk/dataset/mica.


Subject(s)
Computational Biology/methods , High-Throughput Nucleotide Sequencing , Sequence Alignment/methods , Sequence Analysis, DNA/methods , Software , Algorithms , Humans , Programming Languages
3.
Nat Biotechnol ; 33(6): 617-22, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26006006

ABSTRACT

The human genome is diploid, and knowledge of the variants on each chromosome is important for the interpretation of genomic information. Here we report the assembly of a haplotype-resolved diploid genome without using a reference genome. Our pipeline relies on fosmid pooling together with whole-genome shotgun strategies, based solely on next-generation sequencing and hierarchical assembly methods. We applied our sequencing method to the genome of an Asian individual and generated a 5.15-Gb assembled genome with a haplotype N50 of 484 kb. Our analysis identified previously undetected indels and 7.49 Mb of novel coding sequences that could not be aligned to the human reference genome, which include at least six predicted genes. This haplotype-resolved genome represents the most complete de novo human genome assembly to date. Application of our approach to identify individual haplotype differences should aid in translating genotypes to phenotypes for the development of personalized medicine.


Subject(s)
Genome, Human , Haplotypes/genetics , High-Throughput Nucleotide Sequencing/methods , Precision Medicine , Asian People/genetics , Base Sequence , Chromosome Mapping , Diploidy , Genotype , Humans , Phenotype , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
4.
Bioinformatics ; 30(12): 1660-6, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24532719

ABSTRACT

MOTIVATION: Transcriptome sequencing has long been the favored method for quickly and inexpensively obtaining a large number of gene sequences from an organism with no reference genome. Owing to the rapid increase in throughputs and decrease in costs of next- generation sequencing, RNA-Seq in particular has become the method of choice. However, the very short reads (e.g. 2 × 90 bp paired ends) from next generation sequencing makes de novo assembly to recover complete or full-length transcript sequences an algorithmic challenge. RESULTS: Here, we present SOAPdenovo-Trans, a de novo transcriptome assembler designed specifically for RNA-Seq. We evaluated its performance on transcriptome datasets from rice and mouse. Using as our benchmarks the known transcripts from these well-annotated genomes (sequenced a decade ago), we assessed how SOAPdenovo-Trans and two other popular transcriptome assemblers handled such practical issues as alternative splicing and variable expression levels. Our conclusion is that SOAPdenovo-Trans provides higher contiguity, lower redundancy and faster execution. AVAILABILITY AND IMPLEMENTATION: Source code and user manual are available at http://sourceforge.net/projects/soapdenovotrans/.


Subject(s)
Algorithms , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, RNA/methods , Alternative Splicing , Animals , Genomics/methods , Mice , Oryza/genetics
5.
Gigascience ; 1(1): 18, 2012 Dec 27.
Article in English | MEDLINE | ID: mdl-23587118

ABSTRACT

BACKGROUND: There is a rapidly increasing amount of de novo genome assembly using next-generation sequencing (NGS) short reads; however, several big challenges remain to be overcome in order for this to be efficient and accurate. SOAPdenovo has been successfully applied to assemble many published genomes, but it still needs improvement in continuity, accuracy and coverage, especially in repeat regions. FINDINGS: To overcome these challenges, we have developed its successor, SOAPdenovo2, which has the advantage of a new algorithm design that reduces memory consumption in graph construction, resolves more repeat regions in contig assembly, increases coverage and length in scaffold construction, improves gap closing, and optimizes for large genome. CONCLUSIONS: Benchmark using the Assemblathon1 and GAGE datasets showed that SOAPdenovo2 greatly surpasses its predecessor SOAPdenovo and is competitive to other assemblers on both assembly length and accuracy. We also provide an updated assembly version of the 2008 Asian (YH) genome using SOAPdenovo2. Here, the contig and scaffold N50 of the YH genome were ~20.9 kbp and ~22 Mbp, respectively, which is 3-fold and 50-fold longer than the first published version. The genome coverage increased from 81.16% to 93.91%, and memory consumption was ~2/3 lower during the point of largest memory consumption.

SELECTION OF CITATIONS
SEARCH DETAIL
...