Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Sci ; 342: 112026, 2024 May.
Article in English | MEDLINE | ID: mdl-38342186

ABSTRACT

Anthocyanins are among the main pigments involved in the colouration of Asiatic hybrid lily (Lilium spp.). Ethylene, a plant ripening hormone, plays an important role in promoting plant maturation and anthocyanin biosynthesis. However, whether and how ethylene regulates anthocyanin biosynthesis in lily tepals have not been characterized. Using yeast one-hybrid screening, we previously identified an APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) named LhERF4 as a potential inhibitor of LhMYBSPLATTER-mediated negative regulation of anthocyanin biosynthesis in lily. Here, transcript and protein analysis of LhERF4, a transcriptional repressor, revealed that LhERF4 directly binds to the promoter of LhMYBSPLATTER. In addition, overexpression of LhERF4 in lily tepals negatively regulates the expression of key structural genes and the total anthocyanin content by suppressing the LhMYBSPLATTER gene. Moreover, the LhERF4 gene inhibits anthocyanin biosynthesis in response to ethylene, affecting anthocyanin accumulation and pigmentation in lily tepals. Collectively, our findings will advance and elucidate a novel regulatory network of anthocyanin biosynthesis in lily, and this research provides new insight into colouration regulation.


Subject(s)
Anthocyanins , Lilium , Anthocyanins/metabolism , Lilium/metabolism , Flowers/genetics , Transcription Factors/metabolism , Ethylenes/metabolism , Plant Growth Regulators/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism
2.
Plant Mol Biol ; 111(4-5): 439-454, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36913074

ABSTRACT

KEY MESSAGE: Analysis of the flower color formation mechanism of 'Rhapsody in Blue' by BF and WF transcriptomes reveals that RhF3'H and RhGT74F2 play a key role in flower color formation. Rosa hybrida has colorful flowers and a high ornamental value. Although rose flowers have a wide range of colors, no blue roses exist in nature, and the reason for this is unclear. In this study, the blue-purple petals (BF) of the rose variety 'Rhapsody in Blue' and the white petals (WF) of its natural mutant were subjected to transcriptome analysis to find genes related to the formation of the blue-purple color. The results showed that the anthocyanin content was significantly higher in BF than in WF. A total of 1077 differentially expressed genes (DEGs) were detected by RNA-Seq analysis, of which 555 were up-regulated and 522 were down-regulated in the WF vs. BF petals. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of the DEGs revealed that a single gene up-regulated in BF was related to multiple metabolic pathways including metabolic process, cellular process, protein-containing complex, etc. Additionally, the transcript levels of most of the structural genes related to anthocyanin synthesis were significantly higher in BF than in WF. Selected genes were analyzed by qRT-PCR and the results were highly consistent with the RNA-Seq results. The functions of RhF3'H and RhGT74F2 were verified by transient overexpression analyses, and the results confirmed that both affect the accumulation of anthocyanins in 'Rhapsody in Blue'. We have obtained comprehensive transcriptome data for the rose variety 'Rhapsody in Blue'. Our results provide new insights into the mechanisms underlying rose color formation and even blue rose formation.


Subject(s)
Rosa , Transcriptome , Anthocyanins/metabolism , Rosa/genetics , Plant Breeding , Gene Expression Profiling/methods
3.
Antioxidants (Basel) ; 10(10)2021 Oct 17.
Article in English | MEDLINE | ID: mdl-34679768

ABSTRACT

The genus Lilium contains more than 100 wild species and numerous hybrid varieties. Some species of them have been used as medicine and food since ancient times. However, the research on the active components and the medical properties of lilies has only focused on a few species. In this study, the total phenolic acid content (TPC), total flavonoid content (TFC), and antioxidant capacity of 22 representative lilies were systematically investigated. The results showed that the TPC, TFC and antioxidant activity were highly variable among different lilies, but they were significantly positively correlated. Hierarchical cluster analysis indicated that L. henryi and L. regale were arranged in one group characterized by the highest TPC, TFC and antioxidant capacity, followed by Oriental hybrids and Trumpet and Oriental hybrids. The traditional edible and medicinal lilies were clustered in low TPC, TFC and antioxidant capacity group. A total of 577 secondary metabolites, including 201 flavonoids, 153 phenolic acids, were identified in the five species with great differences in antioxidant capacity by extensive targeted metabonomics. Differentially accumulated metabolites (DAMs) analysis reviewed that the DAMs were mainly enriched in secondary metabolic pathways such as isoflavonoid, folate, flavonoid, flavone, flavonol, phenylpropanoid, isoquinoline alkaloid biosynthesis, nicotinate and nicotinamide metabolism and so on. Correlation analysis identified that 64 metabolites were significantly positively correlated with antioxidant capacity (r ≥ 0.9 and p < 0.0001). These results suggested that the genus Lilium has great biodiversity in bioactive components. The data obtained greatly expand our knowledge of the bioactive constituents of Lilium spp. Additionally, it also highlights the potential application of Lilium plants as antioxidants, functional ingredients, cosmetic products and nutraceuticals.

SELECTION OF CITATIONS
SEARCH DETAIL
...