Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2913, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575609

ABSTRACT

Carbaporphyrin dimers, investigated for their distinctive electronic structures and exceptional properties, have predominantly consisted of systems containing identical subunits. This study addresses the associated knowledge gap by focusing on asymmetric carbaporphyrin dimers with Janus-like characteristics. The synthesis of a Janus-type carbaporphyrin pseudo-dimer 5 is presented. It displays antiaromatic characteristics on the fused side and nonaromatic behavior on the unfused side. A newly synthesized tetraphenylene (TPE) linked bis-dibenzihomoporphyrin 8 and a previously reported dibenzo[g,p]chrysene (DBC) linked bis-dicarbacorrole 9 were prepared as controls. Comprehensive analyses, including 1H NMR spectral studies, single crystal X-ray diffraction analyses, and DFT calculations, validate the mixed character of 5. A further feature of the Janus pseudo-dimer 5 is that it may be transformed into a heterometallic complex, with one side coordinating a Cu(III) center and the other stabilizing a BODIPY complex. This disparate regiochemical reactivity underscores the potential of carbaporphyrin dimers as versatile frameworks, with electronic features and site-specific coordination chemistry controlled through asymmetry. These findings position carbaporphyrin dimers as promising candidates for advances in electronic structure studies, coordination chemistry, materials science, and beyond.

2.
J Am Chem Soc ; 146(1): 543-551, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38147538

ABSTRACT

A nanographene-fused expanded carbaporphyrin (5) and its BF2 complex (6) were synthesized. Single-crystal X-ray structures revealed that 5 and 6 are connected by two hexa-peri-hexabenzocoronene (HBC) units and two dipyrromethene or BODIPY units, respectively. As prepared, 5 and 6 both show nonaromatic character with figure-of-eight carbaoctaphyrin (1.1.1.0.1.1.1.0) cores and adopt tweezers-like conformations characterized by a partially confined space between the two constituent HBC units. The distance between the HBC centers is >10 Å, while the dihedral angles between the two HBC planes are 30.5 and 35.2° for 5 and 6, respectively. The interactions between 5 and 6 and fullerene C60 were studied both in organic media and in the solid state. Proton NMR spectral titrations of 5 and 6 with C60 revealed a 1:1 binding mode for both macrocycles. In toluene-d8, the corresponding binding constants were determined to be 1141 ± 17 and 994 ± 10 M-1 for 5 and 6, respectively. Single-crystal X-ray diffraction structural analyses confirmed the formation of 1:1 fullerene inclusion complexes in the solid state. The C60 guests in both complexes are found within triangular pockets composed of two HBC units from the tweezers-like receptor most closely associated with the bound fullerene, as well as an HBC unit from an adjacent host. Femtosecond transient absorption measurements revealed subpicosecond ultrafast charge separation between 5 (and 6) and C60 in the complexes. To the best of our knowledge, the present report provides the first example wherein a nanographene building block is incorporated into the core of a porphyrinic framework.

3.
J Am Chem Soc ; 145(5): 3047-3054, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36693015

ABSTRACT

Two cyclic carbaporphyrin arrays (trimer 6 and tetramer 7) were synthesized from a dibrominated carbaporphyrin precursor (5) via a one-pot Yamamoto-type coupling. Single-crystal X-ray diffraction analyses revealed that 6 and 7 contain three and four covalently linked carbaporphyrin (formally dicarbacorrole) units, respectively. Trimer 6 adopts a roughly planar conformation and tetramer 7 adopts an up-and-down zig-zag conformation. Both 6 and 7 contain a [n]cyclo-meta-phenylene ([n]CMP) core, namely, [6]- and [8]CMP for 6 and 7, respectively. Transient absorption (TA) anisotropy and pump-power-dependent excited-state decay studies provided evidence for excitation energy transfer (EET) within both trimer 6 and tetramer 7. The exciton energy hopping (EEH) times were estimated to be 18 and 35 ps for 6 and 7, respectively, as inferred from pump-power-dependent TA measurements. Since the center-to-center distances between adjacent carbaporphyrin units are similar in 6 and 7, the different EEH times are attributed to differences in the orientation of the transition dipoles in these two congeneric arrays. The orientation factor κ2, the key parameter defining the Förster resonance energy transfer efficiency, was calculated to be 2.15 and 1.03 for 6 and 7, respectively, a finding that supports the shorter excitation energy hopping time seen in the case of trimer 6. To our knowledge, this is the first time that covalently linked cyclic carbaporphyrin arrays were synthesized using a single carbaporphyrin as the starting point and that EET between carbaporphyrin subunits constrained within a well-defined polycyclic framework has been correlated with structural differences.

SELECTION OF CITATIONS
SEARCH DETAIL
...