Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
Oral Dis ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622872

ABSTRACT

OBJECTIVES: Acute and chronic orofacial pain are very common and remain a vexing health problem that has a negative effect on the quality of life. Serotonin (5-HydroxyTryptamine, 5-HT) is a kind of monoamine neurotransmitter that is involved in many physiological and pathological processes. However, its role in orofacial pain remains inconclusive. Therefore, this review aims to summarize the recent advances in understanding the effect exerted by 5-HT on the modulation of orofacial pain. SUBJECTS AND METHODS: An extensive search was conducted on PubMed and Web of Science for pertinent studies focusing on the effects of 5-HT on the modulation of orofacial pain. RESULTS: In this review, we concisely review how 5-HT mediates orofacial pain, how 5-HT is regulated and how we can translate these findings into clinical applications for the prevention and/or treatment of orofacial pain. CONCLUSIONS: 5-HT plays a key role in the modulation of orofacial pain, implying that 5-HT modulators may serve as effective treatment for orofacial pain. However, further research on the precise mechanisms underlying the modulation of orofacial pain is still warranted.

2.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38612855

ABSTRACT

Odontoblastic differentiation of human stem cells from the apical papilla (hSCAPs) is crucial for continued root development and dentin formation in immature teeth with apical periodontitis (AP). Fat mass and obesity-associated protein (FTO) has been reported to regulate bone regeneration and osteogenic differentiation profoundly. However, the effect of FTO on hSCAPs remains unknown. This study aimed to identify the potential function of FTO in hSCAPs' odontoblastic differentiation under normal and inflammatory conditions and to investigate its underlying mechanism preliminarily. Histological staining and micro-computed tomography were used to evaluate root development and FTO expression in SD rats with induced AP. The odontoblastic differentiation ability of hSCAPs was assessed via alkaline phosphatase and alizarin red S staining, qRT-PCR, and Western blotting. Gain- and loss-of-function assays and online bioinformatics tools were conducted to explore the function of FTO and its potential mechanism in modulating hSCAPs differentiation. Significantly downregulated FTO expression and root developmental defects were observed in rats with AP. FTO expression notably increased during in vitro odontoblastic differentiation of hSCAPs, while lipopolysaccharide (LPS) inhibited FTO expression and odontoblastic differentiation. Knockdown of FTO impaired odontoblastic differentiation, whereas FTO overexpression alleviated the inhibitory effects of LPS on differentiation. Furthermore, FTO promoted the expression of secreted modular calcium-binding protein 2 (SMOC2), and the knockdown of SMOC2 in hSCAPs partially attenuated the promotion of odontoblastic differentiation mediated by FTO overexpression under LPS-induced inflammation. This study revealed that FTO positively regulates the odontoblastic differentiation ability of hSCAPs by promoting SMOC2 expression. Furthermore, LPS-induced inflammation compromises the odontoblastic differentiation of hSCAPs by downregulating FTO, highlighting the promising role of FTO in regulating hSCAPs differentiation under the inflammatory microenvironment.


Subject(s)
Lipopolysaccharides , Osteogenesis , Humans , Animals , Rats , Rats, Sprague-Dawley , X-Ray Microtomography , Inflammation/genetics , Calcium-Binding Proteins , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics
3.
PeerJ ; 11: e16489, 2023.
Article in English | MEDLINE | ID: mdl-38084142

ABSTRACT

Background: Dental papilla cells (DPCs) are one of the key stem cells for tooth development, eventually forming dentin and pulp. Previous studies have reported that PER2 is expressed in a 24-hour oscillatory pattern in DPCs in vitro. In vivo, PER2 is highly expressed in odontoblasts (which are differentiated from DPCs). However, whether PER2 modulates the odontogenic differentiation of DPCs is uncertain. This research was to identify the function of PER2 in the odontogenic differentiation of DPCs and preliminarily explore its mechanisms. Methods: We monitored the expression of PER2 in DPCs differentiated in vivo. We used PER2 overexpression and knockdown studies to assess the role of PER2 in DPC differentiation and performed intracellular ATP content and reactive oxygen species (ROS) assays to further investigate the mechanism. Results: PER2 expression was considerably elevated throughout the odontoblastic differentiation of DPCs in vivo. Overexpressing Per2 boosted levels of odontogenic differentiation markers, such as dentin sialophosphoprotein (Dspp), dentin matrix protein 1 (Dmp1), and alkaline phosphatase (Alp), and enhanced mineralized nodule formation in DPCs. Conversely, the downregulation of Per2 inhibited the differentiation of DPCs. Additionally, downregulating Per2 further affected intracellular ATP content and ROS levels during DPC differentiation. Conclusion: Overall, we demonstrated that PER2 positively regulates the odontogenic differentiation of DPCs, and the mechanism may be related to mitochondrial function as shown by intracellular ATP content and ROS levels.


Subject(s)
Dental Papilla , Odontoblasts , Reactive Oxygen Species , Cell Differentiation/genetics , Adenosine Triphosphate
4.
Life Sci ; 332: 122130, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37769809

ABSTRACT

Purinergic signaling system plays a pivotal role in the trigeminal ganglion (TG) which is a primary sensory tissue in vertebrate nervous systems involving orofacial nociception and peripheral sensitization. Despite previous efforts to reveal the expression patterns of purinergic components in the mouse TG, it is still unknown the interspecies differences between human and mouse. In this study, we provide a comprehensive transcriptome profile of the purinergic signaling system across diverse cell types and neuronal subpopulations within the human TG, systematically comparing it with mouse TG. In addition, the evolutionary conservation and species-specific expression patterns of the purinergic components are also discussed. We propose that the data can improve our understanding of purinergic signaling in the peripheral nervous system and facilitate the identification of novel therapeutic targets.

5.
Sensors (Basel) ; 23(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37430573

ABSTRACT

In advanced transportation-management systems, variable speed limits are a crucial application. Deep reinforcement learning methods have been shown to have superior performance in many applications, as they are an effective approach to learning environment dynamics for decision-making and control. However, they face two significant difficulties in traffic-control applications: reward engineering with delayed reward and brittle convergence properties with gradient descent. To address these challenges, evolutionary strategies are well suited as a class of black-box optimization techniques inspired by natural evolution. Additionally, the traditional deep reinforcement learning framework struggles to handle the delayed reward setting. This paper proposes a novel approach using covariance matrix adaptation evolution strategy (CMA-ES), a gradient-free global optimization method, to handle the task of multi-lane differential variable speed limit control. The proposed method uses a deep-learning-based method to dynamically learn optimal and distinct speed limits among lanes. The parameters of the neural network are sampled using a multivariate normal distribution, and the dependencies between the variables are represented by a covariance matrix that is optimized dynamically by CMA-ES based on the freeway's throughput. The proposed approach is tested on a freeway with simulated recurrent bottlenecks, and the experimental results show that it outperforms deep reinforcement learning-based approaches, traditional evolutionary search methods, and the no-control scenario. Our proposed method demonstrates a 23% improvement in average travel time and an average of a 4% improvement in CO, HC, and NOx emission.Furthermore, the proposed method produces explainable speed limits and has desirable generalization power.

6.
Int J Mol Sci ; 24(13)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37445839

ABSTRACT

Human dental pulp stem cells (hDPSCs) possess remarkable self-renewal and multilineage differentiation ability. PER2, an essential circadian molecule, regulates various physiological processes. Evidence suggests that circadian rhythm and PER2 participate in physiological functions of DPSCs. However, the influence of PER2 on DPSCs' differentiation remains largely unknown. This study aimed to explore the effect and potential mechanism of PER2 on hDPSCs' differentiation. Dental pulp tissues were extracted, and hDPSCs were cultured for in vitro and in vivo experiments. Dorsal subcutaneous transplantation was performed in 6-week-old male BALB/c mice. The hDPSCs' odontoblastic/osteogenic differentiation was assessed, and mitochondrial metabolism was evaluated. The results indicated PER2 expression increasing during hDPSCs' odontoblastic/osteogenic differentiation. Gain- and loss-of function studies confirmed that PER2 promoted alkaline phosphatase (ALP) activity, mineralized nodules deposition, mRNA expression of DSPP, DMP1, COL1A1 and protein expression of DSPP and DMP1 in hDPSCs. Furthermore, PER2 enhanced collagen deposition, osteodentine-like tissue formation and DSPP expression in vivo. Mitochondrial metabolic evaluation aimed to investigate the mechanism of PER2-mediated hDPSC odontoblastic/osteogenic differentiation, which showed that PER2 increased ATP synthesis, elevated mitochondrial membrane potential and changed expression of proteins regulating mitochondrial dynamics. This study demonstrated that PER2 promoted hDPSCs' odontoblastic/osteogenic differentiation, which involved mitochondrial metabolic change.


Subject(s)
Dental Pulp , Osteogenesis , Animals , Mice , Humans , Male , Osteogenesis/genetics , Dental Pulp/metabolism , Odontoblasts/metabolism , Cell Differentiation/genetics , Stem Cells/metabolism , Cells, Cultured , Cell Proliferation , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism
7.
J Pineal Res ; 74(4): e12865, 2023 May.
Article in English | MEDLINE | ID: mdl-36864655

ABSTRACT

Tooth development is a complex process that is tightly controlled by circadian rhythm. Melatonin (MT) is a major hormonal regulator of the circadian rhythm, and influences dentin formation and odontoblastic differentiation during tooth development; however, the underlying mechanism remains elusive. This study investigated how MT regulates odontoblastic differentiation, with a special focus on its regulation of mitochondrial dynamics. In rat dental papilla cells (DPCs), we found that MT promotes odontoblastic differentiation concurrently with enhanced mitochondrial fusion, while disruption of mitochondrial fusion by depleting optic atrophy 1 (OPA1) impairs MT-mediated differentiation and mitochondrial respiratory functions. Through RNA sequencing, we discovered that MT significantly upregulated malic enzyme 2 (ME2), a mitochondrial NAD(P)+ -dependent enzyme, and identified ME2 as a critical MT downstream effector that orchestrates odontoblastic differentiation, mitochondrial fusion, and respiration functions. By detecting the spatiotemporal expression of ME2 in developing tooth germs, and using tooth germ reconstituted organoids, we also provided in vivo and ex vivo evidence that ME2 promotes dentin formation, indicating a possible involvement of ME2 in MT-modulated tooth development. Collectively, our findings offer novel understandings regarding the molecular mechanism by which MT affects cell differentiation and organogenesis, meanwhile, the critical role of ME2 in MT-regulated mitochondrial functions is also highlighted.


Subject(s)
Melatonin , Animals , Rats , Cell Differentiation , Dental Pulp , Melatonin/metabolism , Mitochondrial Dynamics , Odontoblasts/metabolism , Respiration , Malate Dehydrogenase/metabolism
8.
Cell Mol Neurobiol ; 43(2): 511-523, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35179680

ABSTRACT

The circadian clock is a biochemical oscillator that is synchronized with solar time. Normal circadian rhythms are necessary for many physiological functions. Circadian rhythms have also been linked with many physiological functions, several clinical symptoms, and diseases. Accumulating evidence suggests that the circadian clock appears to modulate the processing of nociceptive information. Many pain conditions display a circadian fluctuation pattern clinically. Thus, the aim of this review is to summarize the existing knowledge about the circadian clocks involved in diurnal rhythms of pain. Possible cellular and molecular mechanisms regarding the connection between the circadian clocks and pain are discussed.


Subject(s)
Circadian Clocks , Circadian Clocks/physiology , Circadian Rhythm/physiology
9.
J Periodontal Res ; 58(1): 53-69, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36373245

ABSTRACT

BACKGROUND AND OBJECTIVE: Melatonin plays an important role in various beneficial functions, including promoting differentiation. However, effects on osteogenic differentiation, especially in human periodontal cells (hPDLCs), still remain inconclusive. Mitochondria are highly dynamic organelles that play an important role in various biological processes in cells, including energy metabolism and oxidative stress reaction. Furthermore, the translocase of the outer mitochondrial membrane 20 (TOM20) is responsible for recognizing and transporting precursor proteins. Thus, the objective of this study was to evaluate the functionality of melatonin on osteogenesis in human periodontal cells and to explore the involved mechanism of mitochondria. METHODS: The hPDLCs were extracted and identified by flow cytometry and multilineage differentiation. We divided hPDLCs into control group, osteogenic induction group, and osteogenesis with melatonin treatment group (100, 10, and 1 µM). Then we used a specific siRNA to achieve interference of TOM20. Alizarin red and Alkaline phosphatase staining and activity assays were performed to evaluate osteogenic differentiation. Osteogenesis-related genes and proteins were measured by qPCR and western blot. Mitochondrial functions were tested using ATP, NAD+/NADH, JC-1, and Seahorse Mito Stress Test kits. Finally, TOM20 and mitochondrial dynamics-related molecules expression were also assessed by qPCR and western blot. RESULTS: Our results showed that melatonin-treated hPDLCs had higher calcification and ALP activity as well as upregulated OCN and Runx2 expression at mRNA and protein levels, which was the most obvious in 1 µM melatonin-treated group. Meanwhile, melatonin supplement elevated intracellular ATP production and mitochondrial membrane potential by increasing mitochondrial oxidative metabolism, hence causing a lower NAD+ /NADH ratio. In addition, we also found that melatonin treatment raised TOM20 level and osteogenesis and mitochondrial functions were both suppressed after knocking down TOM20. CONCLUSION: We found that melatonin promoted osteogenesis of hPDLCs and 1 µM melatonin had the most remarkable effect. Melatonin treatment can reinforce mitochondrial functions by upregulating TOM20.


Subject(s)
Melatonin , Osteogenesis , Humans , Adenosine Triphosphate , Cell Differentiation , Cells, Cultured , Melatonin/pharmacology , Mitochondria , Mitochondrial Membranes/metabolism , NAD/metabolism , Osteogenesis/genetics , Periodontal Ligament
10.
Int J Mol Sci ; 23(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36362158

ABSTRACT

Recent studies have indicated a central role for LonP1 in mitochondrial function. Its physiological functions include proteolysis, acting as a molecular chaperone, binding mitochondrial DNA, and being involved in cellular respiration, cellular metabolism, and oxidative stress. Given its vital role in energy metabolism, LonP1 has been suggested to be associated with multi-system neoplasms and developmental disorders. In this study, we investigated the roles, possible mechanisms of action, and therapeutic roles of LonP1 in oral and maxillofacial tumor development. LonP1 was highly expressed in oral-maxillofacial cancers and regulated their development through a sig-naling network. LonP1 may therefore be a promising anticancer therapy target. Mutations in LONP1 have been found to be involved in the etiology of cerebral, ocular, dental, auricular, and skeletal syndrome (CODAS). Only patients carrying specific LONP1 mutations have certain dental abnormalities (delayed eruption and abnormal morphology). LonP1 is therefore a novel factor in the development of oral and maxillofacial tumors. Greater research should therefore be conducted on the diagnosis and therapy of LonP1-related diseases to further define LonP1-associated oral phenotypes and their underlying molecular mechanisms.


Subject(s)
Mitochondrial Proteins , Neoplasms , Humans , ATP-Dependent Proteases/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondria/metabolism , DNA, Mitochondrial/metabolism
11.
Front Neurosci ; 16: 929136, 2022.
Article in English | MEDLINE | ID: mdl-36440288

ABSTRACT

Glutamate is the principal excitatory neurotransmitter in the central nervous system. In the periphery, glutamate acts as a transmitter and involves in the signaling and processing of sensory input. Glutamate acts at several types of receptors and also interacts with other transmitters/mediators under various physiological and pathophysiological conditions including chronic pain. The increasing amount of evidence suggests that glutamate may play a role through multiple mechanisms in orofacial pain processing. In this study, we reviewed the current understanding of how peripheral glutamate mediates orofacial pain, how glutamate is regulated in the periphery, and how these findings are translated into therapies for pain conditions.

12.
Int J Mol Sci ; 23(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36077334

ABSTRACT

Protein ubiquitination is a precisely controlled enzymatic cascade reaction belonging to the post-translational modification of proteins. In this process, E3 ligases catalyze the binding of ubiquitin (Ub) to protein substrates and define specificity. The neuronally expressed developmentally down-regulated 4 (NEDD4) subfamily, belonging to the homology to E6APC terminus (HECT) class of E3 ligases, has recently emerged as an essential determinant of multiple cellular processes in different tissues, including bone and tooth. Here, we place special emphasis on the regulatory role of the NEDD4 subfamily in the molecular and cell biology of osteogenesis. We elucidate in detail the specific roles, downstream substrates, and upstream regulatory mechanisms of the NEDD4 subfamily. Further, we provide an overview of the involvement of E3 ligases and deubiquitinases in the development, repair, and regeneration of another mineralized tissue-tooth.


Subject(s)
Ubiquitin-Protein Ligases , Ubiquitin , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , Protein Structure, Tertiary , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
13.
Front Cell Neurosci ; 16: 885569, 2022.
Article in English | MEDLINE | ID: mdl-35722619

ABSTRACT

Orofacial inflammation leads to transcriptional alterations in trigeminal ganglion (TG) neurons. However, diverse alterations and regulatory mechanisms following orofacial inflammatory pain in different types of TG neurons remain unclear. Here, orofacial inflammation was induced by injection of complete Freund's adjuvant (CFA) in mice. After 7 days, we performed single-cell RNA-sequencing on TG cells of mice from control and treatment groups. We identified primary sensory neurons, Schwann cells, satellite glial cells, oligodendrocyte-like cells, immune cells, fibroblasts, and endothelial cells in TG tissue. After principal component analysis and hierarchical clustering, we identified six TG neuronal subpopulations: peptidergic nociceptors (PEP1 and PEP2), non-peptidergic nociceptors (NP1 and NP2), C-fiber low-threshold mechanoreceptors (cLTMR) and myelinated neurons (Nefh-positive neurons, NF) based on annotated marker gene expression. We also performed differential gene expression analysis among TG neuronal subtypes, identifying several differential genes involved in the inflammatory response, neuronal excitability, neuroprotection, and metabolic processes. Notably, we identified several potential novel targets associated with pain modulation, including Arl6ip1, Gsk3b, Scn7a, and Zbtb20 in PEP1, Rgs7bp in PEP2, and Bhlha9 in cLTMR. The established protein-protein interaction network identified some hub genes, implying their critical involvement in regulating orofacial inflammatory pain. Our study revealed the heterogeneity of TG neurons and their diverse neuronal transcriptomic responses to orofacial inflammation, providing a basis for the development of therapeutic strategies for orofacial inflammatory pain.

14.
J Tissue Eng ; 13: 20417314221084095, 2022.
Article in English | MEDLINE | ID: mdl-35321254

ABSTRACT

Apical periodontitis (AP) causes arrest of tooth root development, which is associated with impaired odontoblastic differentiation of stem cells from apical papilla (SCAPs), but the underlying mechanism remains unclear. Here, we investigated roles of extracellular vesicle (EV) in AP and odontoblastic differentiation of SCAPs, moreover, a novel nuclear factor I/C (NFIC)-encapsulated EV was developed to promote dentin regeneration. We detected a higher expression of EV marker CD63 in inflamed apical papilla, and found that EVs from LPS-stimulated dental pulp cells suppressed odontoblastic differentiation of SCAPs through downregulating NFIC. Furthermore, we successfully constructed the NFIC-encapsulated EV by overexpressing NFIC in HEK293FT cells, which could upregulate cellular NFIC level in SCAPs, promoting the proliferation and migration of SCAPs, as well as dentinogenesis both in vitro and in vivo. Collectively, based on pathological roles of EV in AP, our study provides a novel strategy for dentin regeneration by exploiting EV to deliver NFIC.

15.
J Bone Miner Metab ; 40(1): 1-8, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34424416

ABSTRACT

Peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) is an inducible co-regulator of nuclear receptors and is involved in a wide variety of biological responses. As the master regulators of mitochondrial biogenesis and function, PGC-1α and PGC-1ß have been reported to play key roles in bone metabolism. They can be rapidly induced under conditions of increased metabolic activities, such as osteoblastogenesis and osteoclastogenesis, to fulfill greater energy demand or facilitate other biochemical reactions. PGC-1α and PGC-1ß have both overlapping and distinct functions with each other among their target organs. In bone homeostasis, PGC-1α and PGC-1ß promote the expression of genes required for mitochondrial biogenesis via coactivator interactions with key transcription factors, respectively regulating osteoblastogenesis and osteoclastogenesis. Here, we review the current understanding of how PGC-1α and PGC-1ß affect osteoblastogenesis and osteoclastogenesis, how these two PGC-1 coactivators are regulated in bone homeostasis, and how we can translate these findings into therapeutic potential for bone metabolic diseases.


Subject(s)
Homeostasis
16.
Dev Growth Differ ; 63(7): 354-371, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34411285

ABSTRACT

As precursor cells of odontoblasts, dental papilla cells (DPCs) form the dentin-pulp complex during tooth development. Nitric oxide (NO) regulates the functions of multiple cells and organ tissues, including stem cell differentiation and bone formation. In this paper, we explored the involvement of NO in odontoblastic differentiation. We verified the expression of NO synthase (NOS) in rat odontoblasts by nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) staining and immunohistochemistry in vivo. The expression of all three NOS isoforms in rat DPCs was confirmed by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), immunofluorescence, and western blotting in vitro. The expression of neuronal NOS and endothelial NOS was upregulated during the odontoblastic differentiation of DPCs. Inhibition of NOS function by NOS inhibitor l-NG -monomethyl arginine (L-NMMA) resulted in reduced formation of mineralized nodules and expression of dentin sialophosphoprotein (DSPP) and dentin matrix protein (DMP1) during DPC differentiation. The NO donor S-nitroso-N-acetylpenicillamine (SNAP, 0.1, 1, 10, and 100 µM) promoted the viability of DPCs. Extracellular matrix mineralization and odontogenic markers expression were elevated by SNAP at low concentrations (0.1, 1, and 10 µM) and suppressed at high concentration (100 µM). Blocking the generation of cyclic guanosine monophosphate (cGMP) with 1H-(1,2,4)oxadiazolo-(4,3-a)quinoxalin-1-one (ODQ) abolished the positive influence of SNAP on the odontoblastic differentiation of DPCs. These findings demonstrate that NO regulates the odontoblastic differentiation of DPCs, thereby influencing dentin formation and tooth development.


Subject(s)
Nitric Oxide , Odontoblasts , Animals , Cell Differentiation , Cells, Cultured , Dental Papilla , Dental Pulp , Nitric Oxide Synthase/genetics , Rats
17.
Int J Mol Med ; 48(3)2021 Sep.
Article in English | MEDLINE | ID: mdl-34278439

ABSTRACT

Nitric oxide (NO) is an ubiquitous signaling molecule that mediates numerous cellular processes associated with cardiovascular, nervous and immune systems. NO also plays an essential role in bone homeostasis regulation. The present review article summarized the effects of NO on bone metabolism during orthodontic tooth movement in order to provide insight into the regulatory role of NO in orthodontic tooth movement. Orthodontic tooth movement is a process in which the periodontal tissue and alveolar bone are reconstructed due to the effect of orthodontic forces. Accumulating evidence has indicated that NO and its downstream signaling molecule, cyclic guanosine monophosphate (cGMP), mediate the mechanical signals during orthodontic­related bone remodeling, and exert complex effects on osteogenesis and osteoclastogenesis. NO has a regulatory effect on the cellular activities and functional states of osteoclasts, osteocytes and periodontal ligament fibroblasts involved in orthodontic tooth movement. Variations of NO synthase (NOS) expression levels and NO production in periodontal tissues or gingival crevicular fluid (GCF) have been found on the tension and compression sides during tooth movement in both orthodontic animal models and patients. Furthermore, NO precursor and NOS inhibitor administration increased and reduced the tooth movement in animal models, respectively. Further research is required in order to further elucidate the underlying mechanisms and the clinical application prospect of NO in orthodontic tooth movement.


Subject(s)
Gasotransmitters/metabolism , Nitric Oxide/metabolism , Tooth Movement Techniques , Animals , Bone Remodeling , Cyclic GMP/metabolism , Humans , Osteoblasts/cytology , Osteoblasts/metabolism , Osteoclasts/cytology , Osteoclasts/metabolism , Stress, Mechanical , Tooth Movement Techniques/methods
18.
Molecules ; 26(9)2021 May 04.
Article in English | MEDLINE | ID: mdl-34064466

ABSTRACT

Whether the retinoic acid-related orphan receptor (ROR) is a nuclear receptor of melatonin remains controversial. ROR is inextricably linked to melatonin in terms of its expression, function, and mechanism of action. Additionally, studies have illustrated that melatonin functions analogous to ROR ligands, thereby modulating the transcriptional activity of ROR. However, studies supporting these interactions have since been withdrawn. Furthermore, recent crystallographic evidence does not support the view that ROR is a nuclear receptor of melatonin. Some other studies have proposed that melatonin indirectly regulates ROR activity rather than directly binding to ROR. This review aims to delve into the complex relationship of the ROR receptor with melatonin in terms of its structure, expression, function, and mechanism. Thus, we provide the latest evidence and views on direct binding as well as indirect regulation of ROR by melatonin, dissecting both viewpoints in-depth to provide a more comprehensive perspective on this issue.


Subject(s)
Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Melatonin/metabolism , Receptors, Retinoic Acid/metabolism , Animals , Humans , Ligands , Melatonin/metabolism , Models, Biological
19.
Front Cell Neurosci ; 15: 665066, 2021.
Article in English | MEDLINE | ID: mdl-34177465

ABSTRACT

Mast cells (MCs) are immune cells and are widely distributed throughout the body. MCs are not only classically viewed as effector cells of some allergic diseases but also participate in host defense, innate and acquired immunity, homeostatic responses, and immunoregulation. Mounting evidence indicates that activation of MCs releasing numerous vasoactive and inflammatory mediators has effects on the nervous system and has been involved in different pain conditions. Here, we review the latest advances made about the implication of MCs in pain. Possible cellular and molecular mechanisms regarding the crosstalk between MC and the nervous system in the initiation and maintenance of pain are also discussed.

20.
Front Neurosci ; 15: 665445, 2021.
Article in English | MEDLINE | ID: mdl-34017236

ABSTRACT

The activation of opioid receptors by exogenous or endogenous opioids can produce significant analgesic effects in peripheral tissues. Numerous researchers have demonstrated the expression of peripheral opioid receptors (PORs) and endogenous opioid peptides (EOPs) in the orofacial region. Growing evidence has shown the involvement of PORs and immune cell-derived EOPs in the modulation of orofacial pain. In this review, we discuss the role of PORs and EOPs in orofacial pain and the possible cellular mechanisms involved. Furthermore, the potential development of therapeutic strategies for orofacial pain is also summarized.

SELECTION OF CITATIONS
SEARCH DETAIL
...