Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Mater ; 19(3)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38574669

ABSTRACT

Recently,in vitromodels of intestinal mucosa have become important tools for drug screening and studying the physiology and pathology of the intestine. These models enable the examination of cellular behavior in diseased states or in reaction to alterations in the microenvironment, potentially serving as alternatives to animal models. One of the major challenges in constructing physiologically relevantin vitromodels of intestinal mucosa is the creation of three-dimensional microstructures that accurately mimic the integration of intestinal epithelium and vascularized stroma. Here, core-shell alginate (Alg) microspheres were generated to create the compartmentalized extracellular matrix microenvironment needed to simulate the epithelial and vascularized stromal compartments of the intestinal mucosa. We demonstrated that NIH-3T3 and human umbilical vein endothelial cells embedded in the core of the microspheres can proliferate and develop a vascular network, while human colorectal adenocarcinoma cells (Caco-2) can form an epithelial monolayer in the shell. Compared to Caco-2 monolayer encapsulated within the shell, the presence of the vascularized stroma enhances their proliferation and functionality. As such, our core-shell Alg microspheres provide a valuable method for generatingin vitromodels of vascularized intestinal mucosa with epithelial and vascularized stroma arranged in a spatially relevant manner and demonstrating near-physiological functionality.


Subject(s)
Alginates , Cell Proliferation , Human Umbilical Vein Endothelial Cells , Intestinal Mucosa , Microspheres , Tissue Engineering , Alginates/chemistry , Humans , Intestinal Mucosa/metabolism , Animals , Mice , Caco-2 Cells , Tissue Engineering/methods , NIH 3T3 Cells , Extracellular Matrix/metabolism , Tissue Scaffolds/chemistry , Hexuronic Acids/chemistry
2.
Bioresour Technol ; 342: 126019, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34571170

ABSTRACT

A novel strategy was proposed for preparing micro-scale monodisperses nitrifying bacteria (NB) encapsulated Ca-Alg@CaCO3 colloidosomes by exploiting capillary microfluidic device, as an attempt to treat ammonium-nitrogen wastewater in an environment-friendly, efficient and repeatable manner based on the aqueous two-phase (ATPS) system. By complying with the spatial confined urease mediate biomineralization reactions, ATPS droplets (Dextran in Polyethylene glycol) containing urease, NB regent and alginate were used as templates to prepare 500 µm Ca-Alg@CaCO3 colloidosomes with 16.48 Mpa mechanical strength. The activity of NB encapsulated in the colloidosomes was high. The simulated wastewater treated with the colloidosomes achieved a high removal rate even at harsh temperature and pH value. In both simulated and real wastewater treatment, prolonged reuse times (216 h) with high removal rate (>90%, after being applied 72 h) were obtained by using Ca-Alg@CaCO3 colloidosomes, as compared with that (96 h) by using general alginate microbeads.


Subject(s)
Ammonium Compounds , Water Purification , Bacteria , Microfluidics , Nitrogen
SELECTION OF CITATIONS
SEARCH DETAIL
...