Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.043
Filter
1.
Ann Jt ; 9: 13, 2024.
Article in English | MEDLINE | ID: mdl-38690073

ABSTRACT

Background: Rheumatoid arthritis (RA), a systemic autoimmune disease with approximately 1% prevalent population worldwide, which the etiology is still unclear. RA cannot be completely cured at present, which seriously affects the quality of life of patients. This study is to compare the peripheral blood α-L-fucosidase (AFU) between RA and healthy persons. Methods: A cross-sectional study was performed using total of 96 patients with RA served as case group and another 94 age-matched healthy volunteers served as a control group. AFU assay is detected by continuous monitoring method using Toshiba TBA-120FR (Tokyo, Japan) fully automatic biochemical analyzer in Japan, and the reagent is purchased from Zhejiang Quark Biological Company (Zhejiang, China). Statistical analysis was performed using SPSS 24.0 (SPSS, Inc., Chicago, IL, USA). Results: AFU activity in peripheral blood of RA patients were lower than healthy controls. The higher AFU activity, the shorter the course of disease (r=-0.2790, P=0.0065). The activity of lactate dehydrogenase in patients with RA is higher than that of healthy control, but the activity of acetylcholinesterase is lower than that of normal people. Finally, AFU activity was negatively correlated with the activity of lactate dehydrogenase (r=-0.2381, P=0.0208) and positively correlated with the activity of acetylcholinesterase (r=0.2985, P=0.0035). Conclusions: Changes of peripheral blood AFU activity might be associated with progression of disease in RA patients. The changes of AFU activity may lead to disturbances in glucose and lipid metabolism.

2.
ACS Omega ; 9(18): 20176-20184, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38737044

ABSTRACT

The presence of salinity affects the accuracy of existing correlations used in the equation of state. Moreover, the variation of salinity is often ignored in the systematic analysis of the phase diagram, resulting in a large error in the final calculation result. It is obvious that the conventional phase equilibrium calculation is not applicable in a high-salinity reservoir. By introducing the hydrocarbon-brine binary interaction coefficient and α-function, combined with the definition of salinity, and considering the variation of salinity under different pressure and temperature conditions, a more perfect phase equilibrium calculation model was established. The complete phase diagram was drawn, and the calculation results of salinity distribution are obtained. The effect of the mole percentage of water and salt content on the phase behavior was simulated. Finally, the phase distribution simulation is carried out based on the measured data. The phase state and salinity variation law of a high-salinity reservoir are obtained. According to the fluid composition of different periods, the real phase state of the high-salinity reservoir can be monitored in real time. It can provide a theoretical basis for the gas reservoir development and the dynamic evaluation of gas storage injection and production with a hydrocarbon-brine two-phase system.

3.
Gels ; 10(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38786250

ABSTRACT

Intervertebral disc degeneration (IVDD) is a worldwide disease that causes low back pain and reduces quality of life. Biotherapeutic strategies based on tissue engineering alternatives, such as intervertebral disc scaffolds, supplemented by drug-targeted therapy have brought new hope for IVDD. In this study, to explore the role and mechanism of MnO2/GelMA composite hydrogels in alleviating IVDD, we prepared composite hydrogels with MnO2 and methacrylate gelatin (GelMA) and characterized them using compression testing and transmission electron microscopy (TEM). Annulus fibrosus cells (AFCs) were cultured in the composite hydrogels to verify biocompatibility by live/dead and cytoskeleton staining. Cell viability assays and a reactive oxygen species (ROS) probe were used to analyze the protective effect of the composite hydrogels under oxidative damage. To explore the mechanism of improving the microenvironment, we detected the expression levels of antioxidant and autophagy-related genes and proteins by qPCR and Western blotting. We found that the MnO2/GelMA composite hydrogels exhibited excellent biocompatibility and a porous structure, which promoted cell proliferation. The addition of MnO2 nanoparticles to GelMA cleared ROS in AFCs and induced the expression of antioxidant and cellular autophagy through the common SIRT1/NRF2 pathway. Therefore, the MnO2/GelMA composite hydrogels, which can improve the disc microenvironment through scavenging intracellular ROS and resisting oxidative damage, have great application prospects in the treatment of IVDD.

4.
Int Immunopharmacol ; 134: 112191, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38759369

ABSTRACT

Social behavior is inextricably linked to the immune system. Although IFN-γ is known to be involved in social behavior, yet whether and how it encodes social memory remains unclear. In the current study, we injected with IFN-γ into the lateral ventricle of male C57BL/6J mice, and three-chamber social test was used to examine the effects of IFN-γ on their social preference and social memory. The morphology of microglia in the hippocampus, prelimbic cortex and amygdala was examined using immunohistochemistry, and the phenotype of microglia were examined using immunohistochemistry and enzyme-linked immunosorbent assays. The IFN-γ-injected mice were treated with lipopolysaccharide, and effects of IFN-γ on behavior and microglial responses were evaluated. STAT1 pathway and microglia-neuron interactions were examined in vivo or in vitro using western blotting and immunohistochemistry. Finally, we use STAT1 inhibitor or minocycline to evaluated the role of STAT1 in mediating the microglial priming and effects of primed microglia in IFN-γ-induced social dysfunction. We demonstrated that 500 ng of IFN-γ injection results in significant decrease in social index and social novelty recognition index, and induces microglial priming in hippocampus, characterized by enlarged cell bodies, shortened branches, increased expression of CD68, CD86, CD74, CD11b, CD11c, CD47, IL-33, IL-1ß, IL-6 and iNOS, and decreased expression of MCR1, Arg-1, IGF-1 and BDNF. This microglia subpopulation is more sensitive to LPS challenge, which characterized by more significant morphological changes and inflammatory responses, as well as induced increased sickness behaviors in mice. IFN-γ upregulated pSTAT1 and STAT1 and promoted the nuclear translocation of STAT1 in the hippocampal microglia and in the primary microglia. Giving minocycline or STAT1 inhibitor fludarabin blocked the priming of hippocampal microglia induced by IFN-γ, ameliorated the dysfunction in hippocampal microglia-neuron interactions and synapse pruning by microglia, thereby improving social memory deficits in IFN-γ injected mice. IFN-γ initiates STAT1 pathway to induce priming of hippocampal microglia, thereby disrupts hippocampal microglia-neuron interactions and neural circuit link to social memory. Blocking STAT1 pathway or inhibiting microglial priming may be strategies to reduce the effects of IFN-γ on social behavior.


Subject(s)
Hippocampus , Interferon-gamma , Mice, Inbred C57BL , Microglia , STAT1 Transcription Factor , Signal Transduction , Social Behavior , Animals , Microglia/drug effects , Microglia/immunology , Microglia/metabolism , STAT1 Transcription Factor/metabolism , Male , Interferon-gamma/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/immunology , Mice , Signal Transduction/drug effects , Lipopolysaccharides , Memory/drug effects , Cells, Cultured , Neurons/drug effects , Neurons/immunology , Neurons/metabolism
5.
Biomedicines ; 12(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38791095

ABSTRACT

Abdominal imaging of autosomal dominant polycystic kidney disease (ADPKD) has historically focused on detecting complications such as cyst rupture, cyst infection, obstructing renal calculi, and pyelonephritis; discriminating complex cysts from renal cell carcinoma; and identifying sources of abdominal pain. Many imaging features of ADPKD are incompletely evaluated or not deemed to be clinically significant, and because of this, treatment options are limited. However, total kidney volume (TKV) measurement has become important for assessing the risk of disease progression (i.e., Mayo Imaging Classification) and predicting tolvaptan treatment's efficacy. Deep learning for segmenting the kidneys has improved these measurements' speed, accuracy, and reproducibility. Deep learning models can also segment other organs and tissues, extracting additional biomarkers to characterize the extent to which extrarenal manifestations complicate ADPKD. In this concept paper, we demonstrate how deep learning may be applied to measure the TKV and how it can be extended to measure additional features of this disease.

6.
Heliyon ; 10(9): e30189, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38726199

ABSTRACT

The selection of the finest possible embryo in in-vitro fertilization (IVF) was crucial and revolutionary, particularly when just one embryo is transplanted to lessen the possibility of multiple pregnancies. However, practical usefulness of currently used methodologies may be constrained. Here, we established a novel non-invasive embryo evaluation method that combines non-invasive chromosomal screening (NICS) and Timelapse system along with artificial intelligence algorithms. With an area under the curve (AUC) of 0.94 and an accuracy of 0.88, the NICS-Timelapse model was able to predict blastocyst euploidy. The performance of the model was further evaluated using 75 patients in various clinical settings. The clinical pregnancy and live birth rates of embryos predicted by the NICS-Timelapse model, showing that embryos with higher euploid probabilities were associated with higher clinical pregnancy and live birth rates. These results demonstrated the NICS-Timelapse model's significantly wider application in clinical IVF due to its excellent accuracy and noninvasiveness.

7.
J Fungi (Basel) ; 10(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38786711

ABSTRACT

Cordyceps sinensis is a precious medicinal and edible fungus, which is widely used in body health care and disease prevention. The current research focuses on the comparison of metabolite characteristics between a small number of samples and lacks a comprehensive evaluation of the quality of C. sinensis in a large-scale space. In this study, LC-MS/MS, principal component analysis (PCA), hierarchical cluster analysis (HCA), and the membership function method were used to comprehensively evaluate the characteristics and quality of metabolites in 15 main producing areas of C. sinensis in China. The results showed that a total of 130 categories, 14 supercategories, and 1718 metabolites were identified. Carboxylic acids and derivatives, fatty acyls, organo-oxygen compounds, benzene and substituted derivatives, prenol lipids, and glycerophospholipids were the main components of C. sinensis. The HCA analysis and KEGG pathway enrichment analysis of 559 differentially accumulated metabolites (DAMs) showed that the accumulation models of fatty acids and conjugates and carbohydrates and carbohydrate conjugates in glycerophospholipid metabolism and arginine and proline metabolism may be one of the reasons for the quality differences in C. sinensis in different producing areas. In addition, a total of 18 biomarkers were identified and validated, which had a significant discrimination effect on the samples (p < 0.05). Overall, YS, BR, and ZD, with the highest membership function values, are rich and balanced in nutrients. They are excellent raw materials for the development of functional foods and provide scientific guidance for consumers to nourish health care.

8.
Org Lett ; 26(21): 4554-4559, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38767297

ABSTRACT

The direct allylic C(sp3)-H functionalization provides a straightforward protocol for the synthesis of valuable molecules. We report herein the first chemo- and site-selective method for allylic C(sp3)-H isothiocyanation of various internal alkenes under mild electrochemical conditions. This method exhibits broad functional group tolerance and excellent selectivity and can be applied for late-stage isothiocyanation of bioactive molecules. Combined experimental and computational studies indicate that the reaction proceeds via an unexpected [3,3]-sigmatropic rearrangement.

9.
Environ Toxicol ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642008

ABSTRACT

Diallyl disulfide (DADS), an organic component of allicin abstracted from garlic, possesses multi-target antitumor activity. DJ-1 performs a vital function in promoting AKT aberrant activation via down-regulating phosphatase and tensin homologue (PTEN) in tumors. It is unknown the involvement of DJ-1 in epithelial-mesenchymal transition (EMT) of gastric cancer (GC) cells. The purpose of this study is to investigate whether diallyl disulfide (DADS) intervenes in the role of DJ-1 in GC. Based on the identification that the correlation between high DJ-1 and low PTEN expression in GC was implicated in clinical progression, we illuminated that down-regulation of DJ-1 by DADS aided in an increase in PTEN expression and a decrease in phosphorylated AKT levels, which was in line with the results manifested in the DJ-1 knockdown and overexpressed cells, concurrently inhibiting proliferation, EMT, migration, and invasion. Furthermore, the antagonistic effects of DADS on DJ-1 were observed in in vivo experiments. Additionally, DADS mitigated the DJ-1-associated drug resistance. The current study revealed that DJ-1 is one of potential targets for DADS, which hopefully provides a promising strategy for prevention and adjuvant chemotherapy of GC.

10.
Biomark Med ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38629862

ABSTRACT

Objective: This study intended to explore the relationship of PLK3 with prognosis in patients with colorectal cancer (CRC). Methods: PLK3 positivity was detected by immunohistochemistry in 160 patients with CRC receiving surgical resection. Results: The median tumor PLK3-positive rate was 26.5%. Tumor PLK3-positive rate was related to increased lymph node stage (p = 0.002) and tumor-node-metastasis stage (p < 0.001) of CRC. Tumor PLK3-positive rate ≥30% was related to shortened disease-free survival (p = 0.009) and overall survival (p = 0.003); tumor PLK3-positive rate ≥50% showed a stronger correlation with them (both p = 0.001), which was validated by multivariate Cox regression analyses (both p < 0.05). Conclusion: Tumor PLK3-positive rate ≥50% relates to increased tumor stage and unfavorable survival in patients with CRC.

11.
Int J Colorectal Dis ; 39(1): 46, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38565736

ABSTRACT

PURPOSE: Lymph node metastasis (LNM) is a crucial factor that determines the prognosis of T1 colorectal cancer (CRC) patients. We aimed to develop a practical prediction model for LNM in T1 CRC. METHODS: We conducted a retrospective analysis of data from 825 patients with T1 CRC who underwent radical resection at a single center in China. All enrolled patients were randomly divided into a training set and a validation set at a ratio of 7:3 using R software. Risk factors for LNM were identified through multivariate logistic regression analyses. Subsequently, a prediction model was developed using the selected variables. RESULTS: The lymph node metastasis (LNM) rate was 10.1% in the training cohort and 9.3% in the validation cohort. In the training set, risk factors for LNM in T1 CRC were identified, including depressed endoscopic gross appearance, sex, submucosal invasion combined with tumor grade (DSI-TG), lymphovascular invasion (LVI), and tumor budding. LVI emerged as the most potent predictor for LNM. The prediction model based on these factors exhibited good discrimination ability in the validation sets (AUC: 79.3%). Compared to current guidelines, the model could potentially reduce over-surgery by 48.9%. Interestingly, we observed that sex had a differential impact on LNM between early-onset and late-onset CRC patients. CONCLUSIONS: We developed a clinical prediction model for LNM in T1 CRC using five factors that are easily accessible in clinical practice. The model has better predictive performance and practicality than the current guidelines and can assist clinicians in making treatment decisions for T1 CRC patients.


Subject(s)
Colorectal Neoplasms , Models, Statistical , Humans , Retrospective Studies , Prognosis , Lymphatic Metastasis/pathology , Colorectal Neoplasms/surgery , Colorectal Neoplasms/pathology , Risk Factors , Lymph Nodes/surgery , Lymph Nodes/pathology
12.
Nat Commun ; 15(1): 3175, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609408

ABSTRACT

Although papillary thyroid cancer (PTC) has a good prognosis, its recurrence rate is high and remains a core concern in the clinic. Molecular factors contributing to different recurrence risks (RRs) remain poorly defined. Here, we perform an integrative proteogenomic and metabolomic characterization of 102 Chinese PTC patients with different RRs. Genomic profiling reveals that mutations in MUC16 and TERT promoter as well as multiple gene fusions like NCOA4-RET are enriched by the high RR. Integrative multi-omics analyses further describe the multi-dimensional characteristics of PTC, especially in metabolism pathways, and delineate dominated molecular patterns of different RRs. Moreover, the PTC patients are clustered into four subtypes (CS1: low RR and BRAF-like; CS2: high RR and metabolism type, worst prognosis; CS3: high RR and immune type, better prognosis; CS4: high RR and BRAF-like) based on the omics data. Notably, the subtypes display significant differences considering BRAF and TERT promoter mutations, metabolism and immune pathway profiles, epithelial cell compositions, and various clinical factors (especially RRs and prognosis) as well as druggable targets. This study can provide insights into the complex molecular characteristics of PTC recurrences and help promote early diagnosis and precision treatment of recurrent PTC.


Subject(s)
Proteogenomics , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/genetics , Proto-Oncogene Proteins B-raf/genetics , Metabolomics , Thyroid Neoplasms/genetics
13.
Sci Rep ; 14(1): 9705, 2024 04 27.
Article in English | MEDLINE | ID: mdl-38678158

ABSTRACT

The primary triggers that stimulate the body to generate platelet antibodies via immune mechanisms encompass events such as pregnancy, transplantation, and blood transfusion. Interestingly, our findings revealed that a subset of male patients with hepatocellular carcinoma (HCC), despite having no history of transplantation or blood transfusion, has shown positive results in platelet antibody screenings. This hints at the possibility that certain factors, potentially related to the tumor itself or its treatment, may affect antibody production. To delve the causes we initiated this study. We employed a case-control study approach to analyze potential influential factors leading to the positive results via univariate and multivariate regression analysis. We utilized Kendall's tau-b correlation to examine the relationship between the strength of platelet antibodies and peripheral blood cytopenia. Antitumor medication emerged as an independent risk factor for positive results in HCC patients, and the strength of platelet antibodies positively correlated with the severity of anemia and thrombocytopenia. Without history of blood transfusion, transplantation, pregnancy, those HCC patients underwent recent tumor medication therapy are experiencing peripheral erythrocytopenia or thrombocytopenia, for them platelet antibody screenings holds potential clinical value for prevention and treatment of complications like drug-immune-related anemia and/or bleeding.


Subject(s)
Blood Platelets , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/immunology , Liver Neoplasms/blood , Liver Neoplasms/immunology , Male , Female , Middle Aged , Blood Platelets/immunology , Case-Control Studies , Thrombocytopenia/blood , Thrombocytopenia/immunology , Thrombocytopenia/etiology , Aged , Adult , Autoantibodies/blood , Autoantibodies/immunology , Anemia/blood , Anemia/immunology , Risk Factors , Cytopenia
14.
Article in English | MEDLINE | ID: mdl-38683706

ABSTRACT

Due to the nonstationary nature, the distribution of real-world multivariate time series (MTS) changes over time, which is known as distribution drift. Most existing MTS forecasting models greatly suffer from distribution drift and degrade the forecasting performance over time. Existing methods address distribution drift via adapting to the latest arrived data or self-correcting per the meta knowledge derived from future data. Despite their great success in MTS forecasting, these methods hardly capture the intrinsic distribution changes, especially from a distributional perspective. Accordingly, we propose a novel framework temporal conditional variational autoencoder (TCVAE) to model the dynamic distributional dependencies over time between historical observations and future data in MTSs and infer the dependencies as a temporal conditional distribution to leverage latent variables. Specifically, a novel temporal Hawkes attention (THA) mechanism represents temporal factors that subsequently fed into feedforward networks to estimate the prior Gaussian distribution of latent variables. The representation of temporal factors further dynamically adjusts the structures of Transformer-based encoder and decoder to distribution changes by leveraging a gated attention mechanism (GAM). Moreover, we introduce conditional continuous normalization flow (CCNF) to transform the prior Gaussian to a complex and form-free distribution to facilitate flexible inference of the temporal conditional distribution. Extensive experiments conducted on six real-world MTS datasets demonstrate the TCVAE's superior robustness and effectiveness over the state-of-the-art MTS forecasting baselines. We further illustrate the TCVAE applicability through multifaceted case studies and visualization in real-world scenarios.

15.
Antioxidants (Basel) ; 13(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38671870

ABSTRACT

Dry eye disease (DED) is a multifactorial condition affecting the ocular surface. It is characterized by loss of tear film homeostasis and accompanied by ocular symptoms that may potentially result in damage to the ocular surface and even vision loss. Unmodifiable risk factors for DED mainly include aging, hormonal changes, and lifestyle issues such as reduced sleep duration, increased screen exposure, smoking, and ethanol consumption. As its prevalence continues to rise, DED has garnered considerable attention, prompting the exploration of potential new therapeutic targets. Recent studies have found that when the production of ROS exceeds the capacity of the antioxidant defense system on the ocular surface, oxidative stress ensues, leading to cellular apoptosis and further oxidative damage. These events can exacerbate inflammation and cellular stress responses, further increasing ROS levels and promoting a vicious cycle of oxidative stress in DED. Therefore, given the central role of reactive oxygen species in the vicious cycle of inflammation in DED, strategies involving antioxidants have emerged as a novel approach for its treatment. This review aims to enhance our understanding of the intricate relationship between oxidative stress and DED, thereby providing directions to explore innovative therapeutic approaches for this complex ocular disorder.

16.
Aging (Albany NY) ; 16(7): 6613-6626, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38613804

ABSTRACT

Ubiquitination of the proteins is crucial for governing protein degradation and regulating fundamental cellular processes. Deubiquitinases (DUBs) have emerged as significant regulators of multiple pathways associated with cancer and other diseases, owing to their capacity to remove ubiquitin from target substrates and modulate signaling. Consequently, they represent potential therapeutic targets for cancer and other life-threatening conditions. USP43 belongs to the DUBs family involved in cancer development and progression. This review aims to provide a comprehensive overview of the existing scientific evidence implicating USP43 in cancer development. Additionally, it will investigate potential small-molecule inhibitors that target DUBs that may have the capability to function as anti-cancer medicines.


Subject(s)
Neoplasms , Humans , Neoplasms/metabolism , Neoplasms/drug therapy , Animals , Ubiquitination , Endopeptidases/metabolism , Deubiquitinating Enzymes/metabolism , Signal Transduction , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
17.
Toxicol Res (Camb) ; 13(2): tfae051, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38638451

ABSTRACT

Aim: To explore the differential genes in Parkinson's disease (PD) through a preliminary GEO database, and to investigate the possible mechanisms. Materials and Methods: The PD differentially expressed genes (DEGs) were analyzed by the microarray method. Then, these DEGs were applied to KEGG and GO analyses to predict the related signaling pathways and molecular functions. Comparison of GRAMD1C expression levels in the putamen of normal and Parkinson's patients by bioinformatic analysis. PC12 cells were cultured to construct a 6-hydroxydopamine (6-OHDA)-induced Parkinson's cell model. RT-qPCR was performed to detect the efficiency of GRAMD1C siRNA. MTT assay was conducted to examine the proliferation of cells. Then, the apoptosis of each group of cells was measured by flow cytometry. Western blot was carried out to determine the expression of apoptosis-related proteins. Results: Through bioinformatics, GRAMD1C was confirmed to be one of the most significantly upregulated genes in PD. Furthermore, GRAMD1C was notably enhanced in the PD patients and 6-OHDA-induced PC12 cells. Besides, 6-OHDA stimulation significantly reduced PC12 cell proliferation, and it reverted with the GRAMD1C siRNA. Moreover, the flow cytometry results showed that knockdown of GRAMD1C could effectively reduce the high apoptosis rate of PC12 cells induced by 6-OHDA treatment. Similarly, western blot results found that 6-OHDA stimulation markedly increased the expression levels of Bax and Caspase 3Caspase 3 and decreased the Bcl-2 expression in PC12 cells, and GRAMD1C knockdown reversed these changes. Conclusion: GRAMD1C is upregulated in PD, and may affect the PD process through the apoptotic pathway.

18.
J Environ Manage ; 356: 120589, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38531126

ABSTRACT

The leaching of dissolved organic matter (DOM) from the sludge into the liquid phase is induced by ultrasound. However, there is limited investigation into the structure and molecular composition of sludge DOM in this process. The molecular structure and composition of sludge DOM in ultrasonic treatment were comprehensively elucidated in this study. The sludge dissolved organic carbon (DOC) and three-dimensional fluorescence spectroscopy (3D-EEM) image had most significant change at 15-min ultrasonic time and 1.2 W/mL ultrasonic density, respectively. Gas Chromatography-Mass Spectrometry (GC-MS) analysis indicated that ultrasonic treatment of sludge reduced the macromolecules to small molecules in DOM. Then, electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS) analysis revealed that lignin, tannins, and carbohydrates were the main components of sludge DOMs after ultrasound treatment. analysis revealed that lignin, tannins, and carbohydrates were the main components of sludge DOMs after ultrasound treatment. Furthermore, through the Van Krevelen analysis, the major components were CHO (48.50%) and CHOS (23.20%) in the DOM of ultrasonicated sludge. This research provides the basis for the practical application of ultrasonic treatment of sludge and provides basic information for DOM components.


Subject(s)
Dissolved Organic Matter , Sewage , Lignin , Tannins , Ultrasonics , Carbohydrates
19.
J Agric Food Chem ; 72(13): 7130-7139, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38516841

ABSTRACT

Macrophage inflammation and oxidative stress promote atherosclerosis progression. Naringenin is a naturally occurring flavonoid with antiatherosclerotic properties. Here, we elucidated the effects of naringenin on monocyte/macrophage endothelial infiltration and vascular inflammation. We found naringenin inhibited oxidized low-density lipoprotein (oxLDL)-induced pro-inflammatory cytokines such as IL-1ß, IL-6, and TNF-α toward an M2 macrophage phenotype and inhibited oxLDL-induced TLR4 (Toll-like receptor 4) membrane translocation and downstream NF-κB transcriptional activity. Results from flow cytometric analysis showed that naringenin reduced monocyte/macrophage infiltration in the aorta of high-fat-diet-treated ApoE-deficient mice. The aortic cytokine levels were also inhibited in naringenin-treated mice. Further, we found that naringenin reduced lipid raft clustering and acid sphingomyelinase (ASMase) membrane gathering and inhibited the TLR4 and NADPH oxidase subunit p47phox membrane recruitment, which reduced the inflammatory response. Recombinant ASMase treatment or overexpression of ASMase abolished the naringenin function and activated macrophage and vascular inflammation. We conclude that naringenin inhibits ASMase-mediated lipid raft redox signaling to attenuate macrophage activation and vascular inflammation.


Subject(s)
Flavanones , Sphingomyelin Phosphodiesterase , Toll-Like Receptor 4 , Mice , Animals , Toll-Like Receptor 4/genetics , Sphingomyelin Phosphodiesterase/genetics , Inflammation/drug therapy , Inflammation/genetics , NF-kappa B , Cytokines , NADPH Oxidases/genetics , Membrane Microdomains
20.
Langmuir ; 40(13): 6806-6815, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38487868

ABSTRACT

Au nanotube-based composite membrane served as surface-enhanced Raman scattering (SERS) substrate with an ultralarge aspect ratio possesses an excellent flexibility and widely tunable surface plasmon resonance, and by introducing graphene oxide (GO) as a spacer layer, the SERS enhancement of the composite membrane is obviously better than those from the individual blocks of the Au nanotubes (AuNTS) membrane and the Au nanoparticle/graphene oxide (AuNP/GO) membrane. Such a "sandwich" (AuNP/GO/AuNT) structured membrane has a high SERS sensitivity and a wide tunability by controlling the size of Au nanoparticles and the thickness of graphene oxide, and the detection limits of the AuNP/GO/AuNT substrate for R6G and NBA are as low as 10-12 and 10-7 M, respectively; the large enhancement is attributed to the adsorption and chemical mechanism of graphene oxide and the physical mechanism of the Au nanoparticles and nanotubes (the electromagnetic field coupling between them).

SELECTION OF CITATIONS
SEARCH DETAIL
...