Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 20(12): 2917-24, 2009 Dec.
Article in Chinese | MEDLINE | ID: mdl-20353057

ABSTRACT

Based on an extensive collection of information and experimental data, this paper studied the carbon cycle in ten kinds of forest ecosystem in Guangzhou, China, aimed to explore the carbon cycling patterns in, southern subtropical forest ecosystems. For the test ecosystems, their carbon density ranged from 108.35 to 151.85 t C x hm(-2), with 10. 85-48.86 t C x hm(-2) in tree layer and 87.74-99.01 t C x hm(-2) in soil layer (0-60 cm), being lower than the national average. There were 4. 41-9. 15 t C x hm(-2) x a(-1) flowed from atmosphere to vegetation stratum, 0. 74-2.06 t C x hm(-2) x a(-1) from vegetation stratum to soil, and 3.94-5.42 t C x hm(-2) x a(-1) from soil to atmosphere, i.e., the forest systems absorbed 0.47-4.97 t C x hm(-2) x a(-1) from atmosphere. The net ecosystem production (NEP) varied with forest stand, being higher for broadleaved forest than coniferous forest, mixed forest than pure forest, and natural secondary forest than artificial forest.


Subject(s)
Carbon Dioxide/analysis , Carbon/metabolism , Ecosystem , Soil/analysis , Trees/metabolism , China , Cities , Greenhouse Effect/prevention & control , Trees/classification , Trees/growth & development
2.
Ying Yong Sheng Tai Xue Bao ; 19(12): 2605-10, 2008 Dec.
Article in Chinese | MEDLINE | ID: mdl-19288711

ABSTRACT

Based on the investigation of biomass and the measurement of CO2 and CH4 fluxes, the CO2 exchanges between mangrove- and shoal wetland ecosystems and atmosphere in Guangzhou were studied, and the CO2 absorption capability of the wetlands vegetation net productivity as well as the carbon sink function of the wetlands under different waterlogged conditions (perennial, intermittent, and no water-logging) was analyzed. As for mangrove wetland ecosystem, its vegetation net productivity absorbed 33.74 t x hm(-2) x a(-1) of CO2, and soil emitted 12.26 t x hm(-2) x a(-1) of CO2 (including the greenhouse effect amount of CH4 converted into that of CO2,) illustrating that mangrove wetland had a 21.48 t x hm(-2) x a(-1) net absorption of CO2, being a strong carbon sink. For shoal wetland ecosystem, its vegetation net productivity absorbed 8.54 t x hm(-2) x a(-1) of CO2, and soil emitted 5.88 t x hm(-2) x a(-1) of CO2 and 0.19 t x hm(-2) x a(-1) of CH4. If converting into carbon, the wetland absorbed 2.33 t C x hm(-2) x a(-1), and soil emitted 1.74 t C x hm(-2) x a(-1) (including the carbon in CH4), illustrating that shoal wetland fixed 0.59 t C x hm(-2) x a(-1), being a weak carbon sink. If the greenhouse effect amount of CH4 was converted into that of CO2, the soil emitted 9.78 t x hm(-2) x a(-1) of CO2, which was 1.24 t x hm(-2) x a(-1) more than the absorption. As a result, shoal wetland was a weak carbon source. Between the two test greenhouse gases, CH4 was the main one emitted under perennial water-logging, while CO2 was that under no water-logging. Moreover, the wetland under perennial water-logging had the strongest carbon sink function, while that under no water-logging was in adverse.


Subject(s)
Carbon Dioxide/metabolism , Ecosystem , Rhizophoraceae/growth & development , Rhizophoraceae/metabolism , Wetlands , Atmosphere , Biomass , China , Greenhouse Effect
SELECTION OF CITATIONS
SEARCH DETAIL
...