Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(1): 1530-1542, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38040889

ABSTRACT

In industrial applications, Pt-based catalysts for CO oxidation have the dual challenges of CO self-poisoning and SO2 toxicity. This study used synthetic Keggin-type H3PMo12O40 (PMA) as the site of Pt, and the Pt-MoO3 produced by decomposition of PMA was anchored to TiO2 to construct the dual-interface structure of Pt-MoO3 and Pt-TiO2, abbreviated as Pt-P&M/TiO2. Pt-0.125P&M/TiO2 with a molar ratio of Pt to PMA of 8:1 showed both good CO oxidation activity and SO2 tolerance. In the CO activity test, the CO complete conversion temperature T100 of Pt-0.125P&M/TiO2 was 113 ℃ (compared with 135 ℃ for Pt/TiO2). In the SO2 resistance test, the conversion efficiency of Pt-0.125P&M/TiO2 at 170 ℃ remained at 60% after 72 h, while that of Pt/TiO2 was only 13%. H2-TPR and XPS tests revealed that lattice oxygen provided by TiO2 and hydroxyl produced by MoO3 increased the CO reaction rate on Pt. According to the DFT theoretical calculation, the electronegative MoO3 attracted the d-orbital electrons of Pt, which reduced the adsorption energy of CO and SO2 from - 4.15 eV and - 2.54 eV to - 3.56 eV and - 1.52 eV, respectively, and further weakened the influence of strong CO adsorption and SO2 poisoning on the catalyst. This work explored the relationship between catalyst structure and catalyst performance and provided a feasible technical idea for the design of high-performance CO catalysts in industrial applications.


Subject(s)
Metals , Oxygen , Oxidation-Reduction , Oxygen/chemistry , Titanium/chemistry , Catalysis , Sulfur
2.
Int J Biol Macromol ; 237: 124152, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36966855

ABSTRACT

Improving the adsorption kinetics of metal-oxide catalysts is critical for the enhancement of catalytic performance in heterogeneous catalytic oxidation reactions. Herein, based on the biopolymer pomelo peels (PP) and metal-oxide catalyst manganese oxide (MnOx), an adsorption-enhanced catalyst (MnOx-PP) was constructed for catalytic organic dyes oxidative-degradation. MnOx-PP shows excellent methylene blue (MB) and total carbon content (TOC) removal efficiency of 99.5 % and 66.31 % respectively, and keeps the long-lasting stable dynamic degradation efficiency during 72 h based on the self-built continuous single-pass MB purification device. The chemical structure similarity and negative-charge polarity sites of the biopolymer PP improve the adsorption kinetics of organic macromolecule MB, and construct the adsorption-enhanced catalytic oxidation microenvironment. Meanwhile, the adsorption-enhanced catalyst MnOx-PP obtains lower ionization potential and O2 adsorption energy to promote the continuous generation of active substance (O2*, OH*) for the further catalytic oxidation of adsorbed MB molecules. This work explored the adsorption-enhanced catalytic oxidation mechanism for the degradation of organic pollutants, and provided a feasible technical idea for designing adsorption-enhanced catalysts for the long-lasting efficient removal of organic dyes.


Subject(s)
Manganese , Oxides , Adsorption , Porosity , Oxides/chemistry , Oxidation-Reduction , Catalysis , Coloring Agents
3.
J Colloid Interface Sci ; 628(Pt B): 359-370, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35998461

ABSTRACT

Maintaining high activity during prolonged catalysis is always the pursuit in catalytic degradation of organic pollutants. For indoor formaldehyde (HCHO) degradation, the accumulation of intermediates is the major factor limiting the conversion of HCHO to final product CO2 (HCHO-to-CO2 conversion) and long-lasting catalysis. Herein, a three-dimensional radialized nanostructure catalyst self-assembled by MnOOH/MnO2 nanosheets anchored with Pt single atoms (PtSA-MnOOH/MnO2 with a trace platinum loading amount of 0.09%) is developed by thermally assisted two-step electrochemical method, which achieves enhanced CO2 production in catalytic HCHO degradation at the room temperature by the collaborative action of active hydroxyl (OH*) and active oxygen species (O2*). By boosting intermediates' decomposing, the catalyst implements real-time HCHO-to-CO2 conversion (∼85.7%) and long-term continuous HCHO removal (∼98%) during 100 h in a 15 ppm HCHO atmosphere at 25 °C under a weight hourly space velocity of 30000 mL/gcat∙h. Density functional theory calculation shows that the formation energy of O2* from O2 over PtSA-MnOOH/MnO2 is nearly half lower than that over Pt-MnO2 catalyst. And decomposing accumulated intermediates gives the credit to OH* species sustainably generated by the combined action of MnOOH and O2*. The synergistic action between PtSA and MnOOH contributes to the continuous production of O2* and OH* for enhancing CO2 production in indoor catalytic formaldehyde degradation.


Subject(s)
Environmental Pollutants , Platinum , Reactive Oxygen Species , Manganese Compounds/chemistry , Carbon Dioxide , Oxidation-Reduction , Oxides/chemistry , Catalysis , Formaldehyde/chemistry , Hydroxyl Radical
SELECTION OF CITATIONS
SEARCH DETAIL
...