Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Med Sci ; 43(4): 631-646, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37558863

ABSTRACT

Cancer treatment has evolved rapidly due to major advances in tumor immunity research. However, due to the complexity, heterogeneity, and immunosuppressive microenvironment of tumors, the overall efficacy of immunotherapy is only 20%. In recent years, nanoparticles have attracted more attention in the field of cancer immunotherapy because of their remarkable advantages in biocompatibility, precise targeting, and controlled drug delivery. However, the clinical application of nanomedicine also faces many problems concerning biological safety, and the synergistic mechanism of nano-drugs with immunity remains to be elucidated. Our study summarizes the functional characteristics and regulatory mechanisms of nanoparticles in the cancer immune microenvironment and how nanoparticles activate and long-term stimulate innate immunity and adaptive immunity. Finally, the current problems and future development trends regarding the application of nanoparticles are fully discussed and prospected to promote the transformation and application of nanomedicine used in cancer treatment.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Immunotherapy , Nanomedicine , Drug Delivery Systems , Adaptive Immunity , Tumor Microenvironment
2.
EMBO Rep ; 24(9): e55060, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37477088

ABSTRACT

Inflammation plays an important role in the initiation and progression of colorectal cancer (CRC) and leads to ß-catenin accumulation in colitis-related CRC. However, the mechanism remains largely unknown. Here, pancreatic progenitor cell differentiation and proliferation factor (PPDPF) is found to be upregulated in CRC and significantly correlated with tumor-node-metastasis (TNM) stages and survival time. Knockout of PPDPF in the intestinal epithelium shortens crypts, decreases the number of stem cells, and inhibits the growth of organoids and the occurrence of azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC. Mechanistically, PPDPF is found to interact with Casein kinase 1α (CK1α), thereby disrupting its binding to Axin, disassociating the ß-catenin destruction complex, decreasing the phosphorylation of ß-catenin, and activating the Wnt/ß-catenin pathway. Furthermore, interleukin 6 (IL6)/Janus kinase 2 (JAK2)-mediated inflammatory signals lead to phosphorylation of PPDPF at Tyr16 and Tyr17, stabilizing the protein. In summary, this study demonstrates that PPDPF is a key molecule in CRC carcinogenesis and progression that connects inflammatory signals to the Wnt/ß-catenin signaling pathway, providing a potential novel therapeutic target.


Subject(s)
Colorectal Neoplasms , Interleukin-6 , Humans , Interleukin-6/adverse effects , Interleukin-6/metabolism , Phosphorylation , beta Catenin/metabolism , Wnt Signaling Pathway , Janus Kinase 2/metabolism , Colorectal Neoplasms/genetics , Cell Proliferation , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
3.
Front Immunol ; 13: 838374, 2022.
Article in English | MEDLINE | ID: mdl-35924239

ABSTRACT

Objective: The objective of this study was to explore and verify the subtypes in hepatocellular carcinoma based on the immune (lymphocyte and myeloid cells), stem, and stromal cells in the tumor microenvironment and analyze the biological characteristics and potential relevance of each cluster. Methods: We used the xCell algorithm to calculate cell scores and got subtypes by k-means clustering. In the external validation sets, we verified the conclusion stability by a neural network model. Simultaneously, we speculated the inner connection between clusters by pseudotime trajectory analysis and confirmed it by pathway enrichment, TMB, CNV, etc., analysis. Result: According to the results of the consensus cluster, we chose k = 4 as the optimal value and got four different subtypes (C1, C2, C3, and C4) with different biological characteristics based on infiltrating levels of 48 cells in TME. In univariable Cox regression, the hazard ratio (HR) value of C3 versus C1 was 2.881 (95% CI: 1.572-5.279); in multivariable Cox regression, we corrected the age and TNM stage, and the HR value of C3 versus C1 was 2.510 (95% CI: 1.339-4.706). C1 and C2 belonged to the immune-active type, C3 and C4 related to the immune-insensitive type and the potential conversion relationships between clusters. We established a neural network model, and the area under the curves of the neural network model was 0.949 in the testing cohort; the same survival results were also observed in the external validation set. We compared the differences in cell infiltration, immune function, pathway enrichment, TMB, and CNV of four clusters and speculated that C1 and C2 were more likely to benefit from immunotherapy and C3 may benefit from FGF inhibitors. Discussion: Our analysis provides a new approach for the identification of four tumor microenvironment clusters in patients with liver cancer and identifies the biological differences and predicts the immunotherapy efficacy between the four subtypes.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/drug therapy , Cluster Analysis , Humans , Liver Neoplasms/drug therapy , Prognosis , Tumor Microenvironment
4.
Front Oncol ; 10: 1166, 2020.
Article in English | MEDLINE | ID: mdl-32850334

ABSTRACT

N6-methyladenosine (m6A) modification has been reported as a critical regulator of gene transcript expression. Although m6A modification plays important roles in tumor development, its role in therapeutic resistance remains unknown. In this study, we aimed to examine the expression level of m6A-modification related proteins and elucidate the effect of m6A-related proteins on radiation response in nasopharyngeal carcinoma (NPC). Among the genes that participated in m6A modification, YTHDC2, a m6A reader, was found to be consistently highly expressed in radioresistant NPC cells. Knocking down of YTHDC2 expression in radioresistant NPC cells improved the therapeutic effect of radiotherapy in vitro and in vivo, whereas overexpression of YTHDC2 in radiosensitive NPC cells exerted an opposite effect. Bioinformatics and mechanistic studies revealed that YTHDC2 could physically bound to insulin-like growth factor 1 receptor (IGF1R) messenger RNA and promoted translation initiation of IGF1R mRNA, which in turn activated the IGF1R-AKT/S6 signaling pathway. Thus, the present study suggests that YTHDC2 promotes radiotherapy resistance of NPC cells by activating the IGF1R/ATK/S6 signaling axis and may serve as a potential therapeutic target in radiosensitization of NPC cells.

5.
Cell Rep ; 28(5): 1136-1143.e4, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31365859

ABSTRACT

Radiation resistance is a critical problem in radiotherapy for cancer. Radiation kills tumor cells mainly through causing DNA damage. Thus, efficiency of DNA damage repair is one of the most important factors that limits radiotherapy efficacy. Glutamine physiologically functions to generate protein and nucleotides. Here, we study the impact of glutamine metabolism on cancer therapeutic responses, in particular under irradiation-induced stress. We show that radiation-resistant cells possessed low glycolysis, mitochondrial respiration, and TCA cycle but high glutamine anabolism. Transcriptome analyses revealed that glutamine synthetase (GS), an enzyme catalyzing glutamate and ammonia to glutamine, was responsible for the metabolic alteration. ChIP and luciferase reporter assays revealed that GS could be transcriptionally regulated by STAT5. Knockdown of GS delayed DNA repair, weakened nucleotide metabolism, and enhanced radiosensitivity both in vitro and in vivo. Our data show that GS links glutamine metabolism to radiotherapy response through fueling nucleotide synthesis and accelerating DNA repair.


Subject(s)
DNA Damage , DNA Repair , Glutamate-Ammonia Ligase/metabolism , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Nucleotides/metabolism , Radiation Tolerance , Animals , Cell Line, Tumor , Glutamate-Ammonia Ligase/genetics , Glutamine/genetics , Glutamine/metabolism , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Proteins/genetics , Neoplasms/genetics , Nucleotides/genetics
6.
Front Oncol ; 9: 369, 2019.
Article in English | MEDLINE | ID: mdl-31143705

ABSTRACT

Intrahepatic cholangiocarcinoma (ICC) ranks as the second most malignant type of primary liver cancer with a high degree of incidence and a very poor prognosis. Fat mass and obesity-associated protein (FTO) functions as an eraser of the RNA m6A modification, but its roles in ICC tumorigenesis and development remain unknown. We showed here that the protein level of FTO was downregulated in clinical ICC samples and cell lines and that FTO expression was inversely correlated with the expression of CA19-9 and micro-vessel density (MVD). A Kaplan-Meier survival analysis showed that a low expression of FTO predicted poor prognosis in ICC. in vitro, decreased endogenous expression of FTO obviously reduced apoptosis of ICC cells. Moreover, FTO suppressed the anchorage-independent growth and mobility of ICC cells. Through mining the database, FTO was found to regulate the integrin signaling pathway, inflammation signaling pathway, epidermal growth factor receptor (EGFR) signaling pathway, angiogenesis, and the pyrimidine metabolism pathway. RNA decay assay showed that oncogene TEAD2 mRNA stability was impaired by FTO. In addition, the overexpression of FTO suppressed tumor growth in vivo. In conclusion, our study demonstrated the critical roles of FTO in ICC.

7.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1201-1213, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30659926

ABSTRACT

Viral noncoding RNAs (Epstein-Barr virus-encoded RNAs, EBERs) are believed to play a critical role in the progression of lymphoma and nasopharyngeal carcinoma (NPC). However, the accurate mechanisms accounting for their oncogenic function have not been elucidated, especially in terms of interaction between tumor cells and mesenchymal cells. Here, we report that, in addition to NPC cells, EBERs are also found in endothelial cells in Epstein-Barr virus (EBV)-infected NPC parenchymal tissues, which implicates NPC-derived extracellular vesicles (EVs) in transmitting EBERs to endothelial cells. In support of this hypothesis, we first ascertained if EBERs could be transferred to endothelial cells via EVs isolated from NPC culture supernatant. Then, we clarified that EVs-derived EBERs could promote angiogenesis through stimulation of VCAM-1 expression. Finally, we explored the involvement of EBER recognition by TLR3 and RIG-I in NPC angiogenesis. Our observations collectively illustrate the significance and mechanism of EVs-derived EBERs in angiogenesis and underlie the interaction mechanisms between EBV-infected NPC cells and the tumor microenvironment.


Subject(s)
DEAD Box Protein 58/genetics , Extracellular Vesicles/genetics , Herpesvirus 4, Human/genetics , RNA, Untranslated/genetics , Toll-Like Receptor 3/genetics , Vascular Cell Adhesion Molecule-1/genetics , Capillaries/metabolism , Capillaries/virology , Cell Line, Tumor , Cells, Cultured , Gene Expression Profiling/methods , Herpesvirus 4, Human/physiology , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/virology , Humans , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/virology , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/virology , RNA, Viral/genetics , Receptors, Immunologic
SELECTION OF CITATIONS
SEARCH DETAIL
...