Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(11): 108130, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37876795

ABSTRACT

Parkinson's disease (PD) is characterized by the irreversible loss of dopaminergic neurons and the accumulation of α-synuclein in Lewy bodies. The oligomeric α-synuclein (O-αS) is the most toxic form of α-synuclein species, and it has been reported to be a robust inflammatory mediator. Mutations in Leucine-Rich Repeat Kinase 2 (LRRK2) are also genetically linked to PD and neuroinflammation. However, how O-αS and LRRK2 interact in glial cells remains unclear. Here, we reported that LRRK2 G2019S mutation, which is one of the most frequent causes of familial PD, enhanced the effects of O-αS on astrocytes both in vivo and in vitro. Meanwhile, inhibition of LRRK2 kinase activity could relieve the inflammatory effects of both LRRK2 G2019S and O-αS. We also demonstrated that nuclear factor κB (NF-κB) pathway might be involved in the neuroinflammatory responses. These findings revealed that inhibition of LRRK2 kinase activity may be a viable strategy for suppressing neuroinflammation in PD.

2.
J Parkinsons Dis ; 12(1): 295-314, 2022.
Article in English | MEDLINE | ID: mdl-34719508

ABSTRACT

BACKGROUND: Previous investigations have suggested that decreased expression of glutamate transporter-1 (GLT-1) is involved in glutamate excitotoxicity and contribute to the development of Parkinson's disease (PD), GLT-1 is decreased in animal models of PD. GLT-1 is mainly expressed in astrocytes, and the striatum is a GLT-1-rich brain area. OBJECTIVE: The aim was to explore the function and mechanism of astrocytic GLT-1 in PD-like changes. METHODS: In the study, PD-like changes and their molecular mechanism in rodents were tested by a behavioral assessment, micro-positron emission tomography/computed tomography (PET/CT), western blotting, immunohistochemical and immunofluorescence staining, and high performance liquid chromatography pre-column derivatization with O-pthaldialdehida after downregulating astrocytic GLT-1 in vivo and in vitro. RESULTS: In vivo, after 6 weeks of brain stereotactic injection of adeno-associated virus into the striatum, rats in the astrocytic GLT-1 knockdown group showed poorer motor performance, abnormal gait, and depression-like feature; but no olfactory disorders. The results of micro-PET/CT and western blotting indicated that the dopaminergic system was impaired in astrocytic GLT-1 knockdown rats. Similarly, tyrosine hydroxylase (TH) positive immune-staining in neurons of astrocytic GLT-1 knockdown rats showed deficit in cell count. In vitro, knockdown of astrocytic GLT-1 via RNA interference led to morphological injury of TH-positive neurons, which may be related to the abnormal calcium signal induced by glutamate accumulation after GLT-1 knockdown. Furthermore, the GLT-1 agonist ceftriaxone showed a protective effect on TH-positive neuron impairment. CONCLUSION: The present findings may shed new light in the future prevention and treatment of PD based on blocking glutamate excitotoxicity.


Subject(s)
Astrocytes , Excitatory Amino Acid Transporter 2/metabolism , Parkinson Disease , Animals , Astrocytes/metabolism , Down-Regulation , Excitatory Amino Acid Transporter 2/genetics , Excitatory Amino Acid Transporter 2/pharmacology , Glutamic Acid/genetics , Glutamic Acid/metabolism , Glutamic Acid/pharmacology , Humans , Parkinson Disease/metabolism , Positron Emission Tomography Computed Tomography , Rats , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism , Tyrosine 3-Monooxygenase/pharmacology
3.
J Gerontol A Biol Sci Med Sci ; 77(4): 705-716, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34448826

ABSTRACT

Early-life stress (ELS) can cause long-term effects on human health, ranging from adolescence to adulthood, and even to gerontic. Although clinical retrospective data suggest that ELS may be related to senile neurodegenerative diseases such as Parkinson's disease (PD), there are few prospective investigations to explore its real contribution to PD. Here, we investigated the behavioral, histochemical, neuromorphological, and transcriptional changes induced by maternal separation (MS), an ELS model. Without neurotoxin, MS rats showed behavioral alterations in olfaction, locomotion, and gait characters after depression compared with control rats. Based on neuroimaging and histochemistry, although we found that the dopaminergic system in the striatum was impaired after MS, the decrease of striatal dopamine level was ~33%. Consistently, tyrosine hydroxylase immunostaining positive neurons of MS rats in the substantia nigra showed deficit by about 20% in cell counting. Furthermore, using transcriptome sequencing, we discovered many differentially expressed genes (DEGs) of MS rats in the striatum significantly enriched in the pathway of dopaminergic synapse, and the biological process of locomotion and neuromuscular process controlling balance. Encouragingly, some representative DEGs relating to PD were singled out. These results suggest that ELS-depression rats potentially mimic some key features of prodromal stage of PD during natural senescence. In conclusion, our findings provide some novel insights into the future pathogenesis and therapeutic studies for PD related to depression.


Subject(s)
Parkinsonian Disorders , Prodromal Symptoms , Stress, Psychological , Animals , Rats , Aging , Maternal Deprivation , Prospective Studies , Retrospective Studies , Substantia Nigra/metabolism
4.
Front Pharmacol ; 12: 713963, 2021.
Article in English | MEDLINE | ID: mdl-34335276

ABSTRACT

Neurodegenerative disease (NDD), including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, are characterized by the progressive loss of neurons which leads to the decline of motor and/or cognitive function. Currently, the prevalence of NDD is rapidly increasing in the aging population. However, valid drugs or treatment for NDD are still lacking. The clinical heterogeneity and complex pathogenesis of NDD pose a great challenge for the development of disease-modifying therapies. Numerous animal models have been generated to mimic the pathological conditions of these diseases for drug discovery. Among them, zebrafish (Danio rerio) models are progressively emerging and becoming a powerful tool for in vivo study of NDD. Extensive use of zebrafish in pharmacology research or drug screening is due to the high conserved evolution and 87% homology to humans. In this review, we summarize the zebrafish models used in NDD studies, and highlight the recent findings on pharmacological targets for NDD treatment. As high-throughput platforms in zebrafish research have rapidly developed in recent years, we also discuss the application prospects of these new technologies in future NDD research.

5.
Stem Cell Res Ther ; 12(1): 210, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33762014

ABSTRACT

Stem cells are characterized by their self-renewal and multipotency and have great potential in the therapy of various disorders. However, the blood-brain barrier (BBB) limits the application of stem cells in the therapy of neurological disorders, especially in a noninvasive way. It has been shown that small molecular substances, macromolecular proteins, and even stem cells can bypass the BBB and reach the brain parenchyma following intranasal administration. Here, we review the possible brain-entry routes of transnasal treatment, the cell types, and diseases involved in intranasal stem cell therapy, and discuss its advantages and disadvantages in the treatment of central nervous system diseases, to provide a reference for the application of intranasal stem cell therapy.


Subject(s)
Central Nervous System Diseases , Administration, Intranasal , Blood-Brain Barrier , Brain , Central Nervous System Diseases/drug therapy , Drug Delivery Systems , Humans , Stem Cells
6.
Neuromolecular Med ; 22(3): 335-340, 2020 09.
Article in English | MEDLINE | ID: mdl-31933131

ABSTRACT

As a type of stress, maternal separation (MS) has been one of the most widely used models in neuropsychiatric research. An increasing number of studies has found that MS not only affects the function of the hypothalamic-pituitary-adrenal axis and hippocampal 5-hydroxytryptamine system, but also causes dysfunction of the central dopamine (DA) system and increases the susceptibility of dopaminergic neurons to pathogenic factors of Parkinson's disease (PD), for instance, 6-hydroxydopamine, thus impairing motor function. We reviewed the impact of MS on the DA system and its correlation with PD and found the following: (1) discrepant effects of MS on the DA system have been reported; (2) MS is a good model to study the impact of stress on the occurrence and development of PD, however, unified modeling criteria of MS are required; (3) correlation between MS and PD may involve the impact of MS on the DA system, which however is not the only connection; (4) intervening measures can block pathways between MS and PD, which provides reference for the prevention of PD in specific populations such as left-behind children.


Subject(s)
Dopamine/physiology , Hypothalamo-Hypophyseal System/physiopathology , Maternal Deprivation , Parkinson Disease/etiology , Pituitary-Adrenal System/physiopathology , Adult , Adverse Childhood Experiences , Child , Child, Abandoned , Corpus Striatum/physiopathology , Dopaminergic Neurons/pathology , Female , Genetic Heterogeneity , Humans , Models, Neurological , Parkinson Disease/physiopathology , Parkinson Disease/prevention & control , Substantia Nigra/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...